


2024-2025学年河南省禹州市九年级数学第一学期开学达标测试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)关于一个四边形是不是正方形,有如下条件①对角线互相垂直且相等的平行四边形;②对角线互相垂直的矩形;③对角线相等的菱形;④对角线互相垂直平分且相等的四边形;以上条件,能判定正方形的是( )
A.①②③B.②③④C.①③④D.①②③④
2、(4分)如图,在矩形ABCD中,AD=10,AB=6,E为BC上一点,DE平分∠AEC,则CE的长为( )
A.1B.2
C.3D.4
3、(4分)若分式的值为0,则x的值为( )
A.0B.-1C.1D.2
4、(4分)若一次函数的图象经过第一、二、四象限,则下列不等式一定成立的是( )
A.B.C.D.
5、(4分)方程x(x-6)=0的根是( )
A.x1=0,x2=-6B.x1=0,x2=6C.x=6D.x=0
6、(4分)关于的一次函数的图象可能正确的是( )
A.B.C.D.
7、(4分)小刚以400米/分的速度匀速骑车5分钟,在原地休息了6分钟,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是(横坐标表示小刚出发所用时间,纵坐标表示小刚离出发地的距离)( )
A.B.
C.D.
8、(4分)若函数的图象与坐标轴有三个交点,则b的取值范围是
A.且B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE的周长为____.
10、(4分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集是_____________。
11、(4分)如图,在中,D是AB上任意一点,E是BC的中点,过C作,交DE的延长线于F,连BF,CD,若,,,则_________.
12、(4分)如图,在矩形中,点为射线上一动点,将沿折叠,得到若恰好落在射线上,则的长为________.
13、(4分)在结束了初中阶段数学内容的新课教学后,唐老师计划安排60课时用于总复习,根据数学内容所占课时比例,绘制了如图所示的扇形统计图,则唐老师安排复习“统计与概率”内容的时间为______课时.
三、解答题(本大题共5个小题,共48分)
14、(12分)(1)分解因式:;(2)利用分解因式简便计算:
15、(8分)(1)在某次考试中,现有甲、乙、丙3名同学,共四科测试实际成绩如下表:(单位:分)
若欲从中表扬2人,请你从平均数的角度分析,那两人将被表扬?
(2)为了提现科学差异,参与测试的语文、数学、英语、科学实际成绩须以2:3:2:3的比例计入折合平均数,请你从折合平均数的角度分析,哪两人将被表扬?
16、(8分)如图,在中,,,点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动,设点D、E运动的时间是t秒过点D作于点F,连接DE、EF.
求证:;
四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.
当t为何值时,为直角三角形?请说明理由.
17、(10分)已知:,求得值.
18、(10分)解方程(本题满分8分)
(1)(x-5)2 =2(5-x)
(2)2x2-4x-6=0(用配方法);
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知一组数据4,4,5,x,6,6的众数是6,则这组数据的中位数是_____.
20、(4分)甲乙两人在5次打靶测试中,甲成绩的平均数,方差,乙成绩的平均数,方差.教练根据甲、乙两人5次的成绩,选一名队员参加射击比赛,应选择__________.
21、(4分)已知,则的值是_______.
22、(4分)若,是一元二次方程的两个根,则______.
23、(4分)某中学人数相等的甲乙两班学生参加了同一次数学测试,两班的平均分、方差分别为甲=82分,乙=82分,S甲2=245分,S乙2=90分,那么成绩较为整齐的是______班(填“甲”或“乙”)。
二、解答题(本大题共3个小题,共30分)
24、(8分) (1)解不等式组;
(2)已知,求的值.
25、(10分)如图,在平面直角坐标系中,点A的坐标为(0,6),点B在x轴的正半轴上.若点P、Q在线段AB上,且PQ为某个一边与x轴平行的矩形的对角线,则称这个矩形为点P、Q的“涵矩形”。下图为点P、Q的“涵矩形”的示意图.
(1)点B的坐标为(3,0);
①若点P的横坐标为,点Q与点B重合,则点P、Q的“涵矩形”的周长为 .
②若点P、Q的“涵矩形”的周长为6,点P的坐标为(1,4),则点E(2,1),F(1,2),G(4,0)中,能够成为点P、Q的“涵矩形”的顶点的是 .
(2)四边形PMQN是点P、Q的“涵矩形”,点M在△AOB的内部,且它是正方形;
①当正方形PMQN的周长为8,点P的横坐标为3时,求点Q的坐标.
②当正方形PMQN的对角线长度为/2时,连结OM.直接写出线段OM的取值范围 .
26、(12分)某校初中部三个年级共挑选名学生进行跳绳测试,其中七年级人,八年级人,九年级人,体育老师在测试后对测试成绩进行整理,得到下面统计图表.
(1)表格中的落在 组(填序号);
①; ②;③;④;⑤;⑥;⑦
(2)求这名学生的平均成绩;
(3)在本次测试中,八年级与九年级都只有位学生跳下,判断这两位学生成绩在自己所在年级参加测试学生中的排名,谁更考前?请简要说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
利用正方形的判定方法逐一分析判断得出答案即可.
【详解】
解:①对角线互相垂直且相等的平行四边形是正方形,故正确;
②对角线互相垂直的矩形是正方形,故正确;
③对角线相等的菱形是正方形,故正确;
④对角线互相垂直平分且相等的四边形是正方形,故正确;
故选:D.
本题主要考查正方形的判定方法,掌握正方形的判定方法是解题的关键.
2、B
【解析】
根据平行线的性质以及角平分线的性质证明∠ADE=∠AED,根据等角对等边,即可求得AE的长,在直角△ABE中,利用勾股定理求得BE的长,则CE的长即可求解.
【详解】
解:∵四边形ABCD是矩形,
∴AD∥BC,
∴∠DEC=∠ADE,
又∵∠DEC=∠AED,
∴∠ADE=∠AED,
∴AE=AD=10,
在直角△ABE中,BE=,
∴CE=BC﹣BE=AD﹣BE=10﹣8=1.
故选B.
考点:矩形的性质;角平分线的性质.
3、B
【解析】
解:依题意得,x+1=2,
解得x=-1.
当x=-1时,分母x+2≠2,
即x=-1符合题意.
故选B.
若分式的值为零,需同时具备两个条件:(1)分子为2;(2)分母不为2.这两个条件缺一不可.
4、D
【解析】
∵一次函数y=ax+b的图象经过第一、二、四象限,
∴a<0,b>0,
∴a+b不一定大于0,故A错误,
a−b<0,故B错误,
ab<0,故C错误,
<0,故D正确.
故选D.
5、B
【解析】
根据因式分解,原方程转化为x=0或x-6=0,然后解两个一次方程即可得答案.
【详解】
解:x(x-6)=0,
x=0或x-6=0,
∴x1=0,x2=6,
故选B.
本题考查了因式分解法解一元二次方程,熟练掌握解一元二次方程的解法是关键.
6、C
【解析】
根据图象与y轴的交点直接解答即可.
【详解】
解:令x=0,则函数y=kx+k2+1的图象与y轴交于点(0,k2+1),
∵k2+1>0,
∴图象与y轴的交点在y轴的正半轴上.
故选C.
本题考查一次函数的图象,熟知一次函数的图象与y轴交点的特点是解答此题的关键.
7、C
【解析】
由题意结合函数图象的性质与实际意义,进行分析和判断.
【详解】
解:∵小刚在原地休息了6分钟,
∴排除A,
又∵小刚再休息后以500米/分的速度骑回出发地,可知小刚离出发地的距离越来越近,
∴排除B、D,只有C满足.
故选:C.
本题考查一次函数图象所代表的实际意义,学会判断横坐标和纵坐标所表示的实际含义以及运用数形结合思维分析是解题的关键.
8、A
【解析】
抛物线与坐标轴有三个交点,则抛物线与x轴有2个交点,与y轴有一个交点.
解:∵函数的图象与坐标轴有三个交点,
∴,且,
解得,b<1且b≠0.
故选A.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
先根据勾股定理求出BC的长,再根据图形翻折变换的性质得出AE=CE,进而求出△ABE的周长.
【详解】
∵在△ABC中,∠B=90°,AB=3,AC=5,
∵△ADE是△CDE翻折而成,
∴AE=CE,
∴AE+BE=BC=4,
∴△ABE的周长=AB+BC=3+4=1.
故答案为:1.
本题考查的是图形翻折变换的性质,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
10、x<
【解析】
先根据函数y=2x和y=ax+4的图象相交于点A(m,3),求出m的值,从而得出点A的坐标,再根据函数的图象即可得出不等式2x<ax+4的解集.
【详解】
解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),
∴3=2m,
解得m,
∴点A的坐标是(,3),
∴不等式2x<ax+4的解集为x<.
此题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
11、1
【解析】
证明CF∥DB,CF=DB,可得四边形CDBF是平行四边形,作EM⊥DB于点M,解直角三角形即可.
【详解】
解:∵CF∥AB,
∴∠ECF=∠EBD.
∵E是BC中点,
∴CE=BE.
∵∠CEF=∠BED,
∴△CEF≌△BED(ASA).
∴CF=BD.
∴四边形CDBF是平行四边形.
作EM⊥DB于点M,
∵四边形CDBF是平行四边形,,
∴BE=,DF=2DE,
在Rt△EMB中,EM2+BM2=BE2且EM=BM
∴EM=1,
在Rt△EMD中,
∵∠EDM=30°,
∴DE=2EM=2,
∴DF=2DE=1.
故答案为:1.
本题考查平行四边形的判定和性质、全等三角形的判定和性质、勾股定理、直角三角形30度角性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,
12、或15
【解析】
如图1,根据折叠的性质得到AB=A=5,E=BE,根据勾股定理求出BE,如图2,根据折叠的性质得到A=AB=5,求得AB=BF=5, 根据勾股定理得到CF=4根据相似三角形的性质列方程即可得到结论.
【详解】
∵四边形ABCD是矩形,
∴AD=BC=3,CD=AB=5,
如图1,由折叠得AB=A=5,E=BE,
∴,
∴,
在Rt△中, ,
∴,
解得BE=;
如图2,由折叠得AB=A=5,
∵CD∥AB,
∴∠=∠,
∵,
∴,
∵AE垂直平分,
∴BF=AB=5,
∴,
∵CF∥AB,
∴△CEF∽△ABE,
∴,
∴,
∴BE=15,
故答案为:或15.
此题考查矩形的性质,折叠的性质,勾股定理,相似三角形的判定及性质,根据折叠的要求正确画出符合题意的图形进行解答是解题的关键.
13、1
【解析】
先计算出“统计与概率”内容所占的百分比,再乘以10即可.
【详解】
解:依题意,得(1-45%-5%-40%)×10=10%×10=1.
故答案为1.
本题考查扇形统计图及相关计算.扇形统计图是用整个圆表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)1.
【解析】
(1)先提公因式,再利用平方差公式进行计算即可
(2)运用完全平方公式,将因式因式分解即可
【详解】
解:(1)原式
(2)原式=2019 -2019×2×2020+2020
此题考查因式分解的应用,掌握运算法则是解题关键
15、(1)应表扬乙、丙两人;(2)应表扬甲、丙两人
【解析】
(1)把各科分数相加,再除以4,求出各自的平均数即可;
(2)按比例计算出平均分,再判断即可.
【详解】
解:(1)甲:(分);
乙:(分);
丙:(分),
应表扬乙、丙两人.
(2)折合后甲:(分);
折合后乙:(分);
折合后丙甲:(分),
应表扬甲、丙两人.
此题考查算术平均数和加权平均数的计算,解题的关键是掌握加权平均数等于各数据与其权的积得和除以数据的个数.在计算时搞清楚数据对应的权.
16、(1)证明见解析;(2)能,理由见解析;(3)秒或4秒时,为直角三角形.
【解析】
在中,,,根据30°角直角三角形的性质及已知条件即可证得结论;先证得四边形AEFD为平行四边形,使▱AEFD为菱形则需要满足的条件为AE=AD,由此即可解答;时,四边形EBFD为矩形在Rt△AED中求可得,由此即可解答;时,由知,则得,求得,由此列方程求解即可;时,此种情况不存在.
【详解】
证明:在中,,,,
.
又,
.
解:能理由如下:
,,
.
又,
四边形AEFD为平行四边形.
,
.
.
若使▱AEFD为菱形,则需,
即,.
即当时,四边形AEFD为菱形.
解:时,四边形EBFD为矩形.
在中,,
.
即,.
时,由四边形AEFD为平行四边形知,
.
,
.
即,.
时,此种情况不存在.
综上所述,当秒或4秒时,为直角三角形.
本题考查了菱形的性质,考查了菱形是平行四边形,考查了菱形的判定定理,以及菱形与矩形之间的联系.难度适宜,计算繁琐.
17、2015
【解析】
先根据完全平方公式将多项式变形,再将a的值代入计算即可.
【详解】
原式=,
∵,
∴原式.
此题考查多项式的化简求值,二次根式的乘方计算,将多项式正确变形使计算更加简便.
18、(1)x1=5,x2=3;(2)x1=3,x2=-1.
【解析】
试题分析:(1)先移项,再提取公因式(x-5),把原方程化为二个一元一次方程求解即可.
(2)方程两边同除以2,再把常数项-3移到方程右边,方程两边同时加上一次项系数一半的平方,进行配方,方程两边直接开平方求出方程的解即可.
试题解析:(1)移项得:(x-5)2+2(x-5)=0
∴(x-5)(x-3)=0
即:x-5=0,x-3=0
解得:x1=5,x2=3;
(2)方程变形为:x2-2x-3=0
移项得:x2-2x=3
配方得:x2-2x+1=3+1
(x-1)2=4
x-1=±2
解得:x1=3,x2=-1.
考点:1.解一元二次方程----因式分解法;2.解一元二次方程---配方法.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.1
【解析】
这组数据4,4,1,,6,6的众数是6,说明6出现的次数最多,因此,从小到大排列后,处在第3、4位两个数据的平均数为,因此中位数是1.1.
【详解】
解:这组数据4,4,1,,6,6的众数是6,
,
,
故答案为:1.1.
考查众数、中位数的意义及求法,明确众数、中位数的意义,掌握众数、中位数的求法是解决问题的前提.
20、甲
【解析】
根据根据方差的定义,方差越小数据越稳定,即可得出答案.
【详解】
解:因为甲、乙射击成绩的平均数一样,但甲的方差较小,说明甲的成绩比较稳定,因此推荐甲更合适.
本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数。
21、
【解析】
先对原式进行化简,然后代入a,b的值计算即可.
【详解】
,
.
,
,
∴原式= ,
故答案为:.
本题主要考查二次根式的运算,掌握完全平方公式和平方差是解题的关键.
22、3
【解析】
利用根与系数的关系可得两根之和与两根之积,再整体代入通分后的式子计算即可.
【详解】
解:∵,是一元二次方程的两个根,∴,
∴.
故答案为:3.
本题考查的是一元二次方程根与系数的关系,熟练掌握基本知识是解题的关键.
23、乙
【解析】
根据方差的定义,对S甲2和S乙2比大小,方差越小数据越稳定,即可得出答案.
【详解】
解:两班平均分和方差分别甲=82分,乙=82分,S甲2=245分,S乙2=90分
∴S甲2>S乙2
∴成绩较为整齐的是乙.故答案是乙.
本题考查了方差的定义即方差越小数据越稳定,学生们掌握此定义即可.
二、解答题(本大题共3个小题,共30分)
24、 (1)x<-10;(2)6.
【解析】
(1)先分别解两个不等式得到x<-1和x<-10,然后根据小小取较小确定不等式组的解集;
(2)将两边同时平方,然后利用完全平方公式可求得答案.
【详解】
(1)
解不等式①得,x<-1,
解不等式②得,x<-10,
所以,不等式组的解集为:x<-10;
(2)∵
∴
∴
∴
本题考查利用完全平方公式化简求值、解一元一次不等式组,解答本题的关键是明确利用完全平方公式化简求值的方法和解不等式组的方法.
25、(1)①1,②(1,2);(2)①(1,5)或(5,1),②
【解析】
(1)①根据题意求出PE,EQ即可解决问题.
②求出点P、Q的“涵矩形”的长与宽即可判断.
(2)①求出正方形的边长,分两种情形分别求解即可解决问题.
②点M在直线y=-x+5上运动,设直线y=-x+5交x轴于F,交y轴于E,作OD⊥EF于D.求出OM的最大值,最小值即可判断.
【详解】
解:(1)①如图1中,
由题意:矩形PEQF中,EQ=PF=3- ,
∴OE=EQ,
∵EP∥OA,
∴AP=PQ,
∴PE=QF=OA=3,
∴点P、Q的“涵矩形”的周长=(3+)×2=1.
②如图2中,
∵点P、Q的“涵矩形”的周长为6,
∴邻边之和为3,
∵矩形的长是宽的两倍,
∴点P、Q的“涵矩形”的长为2,宽为1,
∵P(1,4),F(1,2),
∴PF=2,满足条件,
∴F(1,2)是矩形的顶点.
(2)①如图3中,
∵点P、Q的“涵矩形”是正方形,
∴∠ABO=45°,
∴点A的坐标为(0,6),
∴点B的坐标为(6,0),
∴直线AB的函数表达式为y=-x+6,
∵点P的横坐标为3,
∴点P的坐标为(3,3),
∵正方形PMQN的周长为8,
∴点Q的横坐标为3-2=1或3+2=5,
∴点Q的坐标为(1,5)或(5,1).
②如图4中,
∵正方形PMQN的对角线为,
∴PM=MQ=1,
易知M在直线y=-x+5上运动,设直线y=-x+5交x轴于F,交y轴于E,作OD⊥EF于D,
∵OE=OF=5,
∴EF= ,
∵OD⊥EF,
∴ED=DF,
∴OD=EF= ,
∴OM的最大值为5,最小值为,
∴.
本题属于四边形综合题,考查了矩形的判定和性质,正方形的判定和性质,一次函数的应用,垂线段最短等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题.
26、(1)④;(2)80;(3)八年级得分的那位同学名次较靠前,理由详见解析.
【解析】
(1)根据题意,七年级由40人,则中位数应该在第20和21个人取平均值,即可得到答案;
(2)利用加权平均数,即可求出100名学生的平均成绩;
(3)由题意,八九年级人数一样,则比较中位数,即可得到答案.
【详解】
解:根据直方图可知,七年级第20和第21个人都落在;
故答案为:④.
(2)这名学生的平均成绩为:
;
(3)八年级得分的那位同学名次较靠前,
理由如下:
依题意得:八年级和九年级被挑选的学生人数相同,分别把两个年级的成绩按从高到低排列,由两个年级的中位数可知,八年级跳下的学生在该年级排名中上,而八年级跳下的学生在该年级排名中下,八年级得分的那位同学名次较靠前.
本题考查了众数,中位数,平均数,熟练掌握众数,中位数,平均数的定义是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
语文
数学
英语
科学
甲
95
95
80
150
乙
105
90
90
139
丙
100
100
85
139
年级
平均成绩
中位数
众数
七年级
78.5
m
85
八年级
80
78
82
九年级
82
85
84
2024-2025学年衡水市滏阳中学数学九年级第一学期开学达标检测试题【含答案】: 这是一份2024-2025学年衡水市滏阳中学数学九年级第一学期开学达标检测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年河南省郑州市名校数学九年级第一学期开学达标检测模拟试题【含答案】: 这是一份2024-2025学年河南省郑州市名校数学九年级第一学期开学达标检测模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年河南省新乡七中学九年级数学第一学期开学达标检测模拟试题【含答案】: 这是一份2024-2025学年河南省新乡七中学九年级数学第一学期开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。