|试卷下载
终身会员
搜索
    上传资料 赚现金
    河北省唐山市龙泉中学2024年数学九上开学考试试题【含答案】
    立即下载
    加入资料篮
    河北省唐山市龙泉中学2024年数学九上开学考试试题【含答案】01
    河北省唐山市龙泉中学2024年数学九上开学考试试题【含答案】02
    河北省唐山市龙泉中学2024年数学九上开学考试试题【含答案】03
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    河北省唐山市龙泉中学2024年数学九上开学考试试题【含答案】

    展开
    这是一份河北省唐山市龙泉中学2024年数学九上开学考试试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)若关于x的方程的一个根是3,则m-n的值是
    A.-1B.-3C.1D.3
    2、(4分)用配方法解方程x2+3x+1=0,经过配方,得到( )
    A.(x+)2=B.(x+)2=
    C.(x+3)2=10D.(x+3)2=8
    3、(4分)已知反比例函数y=,下列结论中,不正确的是( ).
    A.图象必经过点(1,m).B.y随x的增大而减少.
    C.当m>0时,图象在第一、三象限内.D.若y=2m,则x=.
    4、(4分)如图,在中,,,、、分别为、、的中点,连接、,则四边形的周长是( )
    A.5B.7C.9D.11
    5、(4分)下列计算结果,正确的是( )
    A.B.C.D.
    6、(4分)不等式 的正整数解的个数是( )
    A.7个B.6个C.4个D.0个
    7、(4分)已知是一元二次方程的一个实数根,则的取值范围为( )
    A.B.C.D.
    8、(4分)用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为( )
    A.(x+3)2=1B.(x﹣3)2=1
    C.(x+3)2=19D.(x﹣3)2=19
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在平行四边形中,的平分线交于点,.若,,则四边形的面积为________.
    10、(4分)如图,菱形的周长为20,对角线的长为6,则对角线的长为______.
    11、(4分)若,则m-n的值为_____.
    12、(4分)若关于x的方程的解是负数,则a的取值范围是_____________。
    13、(4分)如图,在矩形中,的平分线交于点,连接,若,,则_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图所示,图1、图2分别是的网格,网格中的每个小正方形的边长均为1.请按下列要求分别画出相应的图形,且所画图形的每个顶点均在所给小正方形的顶点上.
    (1)在图1中画出一个周长为的菱形 (非正方形);
    (2)在图2中画出一个面积为9的平行四边形,且满足,请直接写出平行四边形的周长.
    15、(8分)如图,矩形OBCD位于直角坐标系中,点B(,0),点D(0,m)在y轴正半轴上,点A(0,1),BE⊥AB,交DC的延长线于点E,以AB,BE为边作▱ABEF,连结AE.
    (1)当m=时,求证:四边形ABEF是正方形.
    (2)记四边形ABEF的面积为S,求S关于m的函数关系式.
    (3)若AE的中点G恰好落在矩形OBCD的边上,直接写出此时点F的坐标.
    16、(8分)用一条长48cm的绳子围矩形,
    (1)怎样围成一个面积为128cm2的矩形?
    (2)能围成一个面积为145cm2的矩形吗?为什么?
    17、(10分)如图,在四边形ABCD中,AC⊥CD,若AB=4,BC=5,AD=2,∠D=30°,求四边形ABCD的面积.
    18、(10分)如图,在长方形中,为平面直角坐标系的原点,点在轴上,点在轴上,点在第一象限内,点从原点出发,以每秒个单位长度的速度沿着的路线移动(即沿着长方形的边移动一周).
    (1)分别求出,两点的坐标;
    (2)当点移动了秒时,求出点的坐标;
    (3)在移动过程中,当三角形的面积是时,求满足条件的点的坐标及相应的点移动的时间.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)某种感冒病毒的直径是0.000 000 12米,用科学记数法表示为 米.
    20、(4分)如图,▱ABCD中,,,垂足为点若,则的度数为______.
    21、(4分)如图,正方形中,,点在边上,且.将沿对折至,延长交边于点,连接、.则下列结论:①:②;③:④.其中正确的有_(把你认为正确结论的序号都填上)
    22、(4分)在菱形ABCD中,E为AB的中点,OE=3,则菱形ABCD的周长为.
    23、(4分)如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为20cm,则四边形ABFD的周长为________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)随着移动终端设备的升级换代,手机已经成为我们生活中不可缺少的一部分,为了解中学生在假期使用手机的情况(选项:A.和同学亲友聊天;B.学习;C.购物;D.游戏;E.其它),端午节后某中学在全校范围内随机抽取了若干名学生进行调查,得到图表(部分信息未给出):
    根据以上信息解答下列问题:
    (1)这次被调查的学生有多少人?
    (2)求表中m,n,p的值,并补全条形统计图.
    (3)若该中学约有800名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?并根据以上调查结果,就中学生如何合理使用手机给出你的一条建议.
    25、(10分)图(a)、图(b)、图(c)是三张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.请在图(a)、图(b)、图(c)中,分别画出符合要求(1),(2),(3)的图形,所画图形各顶点必须与方格纸中的小正方形顶点重合.
    (1)画一个底边为4,面积为8的等腰三角形;
    (2)画一个面积为10的等腰直角三角形;
    (3)画一个面积为12的平行四边形。
    26、(12分)如图,在正方形ABCD中,AB=6,点E在边CD上,且CE=2DE,将△ADE沿AE对折得到△AFE,延长EF交边BC于点G,连结AG、CF.
    (1)求证:△ABG≌△AFG;
    (2)判断BG与CG的数量关系,并证明你的结论;
    (3)作FH⊥CG于点H,求GH的长.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    把x=1代入已知方程,即可求得(m-n)的值.
    【详解】
    解:由题意,得
    x=1满足方程,
    所以,9+1m-1n =0,
    解得,m-n= -1.
    故选B.
    本题考查一元二次方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.
    2、B
    【解析】
    把常数项1移项后,在左右两边同时加上一次项系数3的一半的平方,由此即可求得答案.
    【详解】
    ∵x2+3x+1=0,
    ∴x2+3x=﹣1,
    ∴x2+3x+()2=﹣1+()2,
    即(x+)2=,
    故选B.
    本题考查了解一元二次方程--配方法.用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.
    3、B
    【解析】
    根据反比例函数的性质对各项进行判断即可.
    【详解】
    A. 图象必经过点(1,m),正确;
    B. 当时,在每一个象限内y随x的增大而减少,错误;
    C. 当m>0时,图象在第一、三象限内,正确;
    D. 若y=2m,则x=,正确;
    故答案为:B.
    本题考查了反比例函数的问题,掌握反比例函数的性质是解题的关键.
    4、A
    【解析】
    先根据三角形中位线性质得DF=BC=1,DF∥BC,EF=AB=,EF∥AB,则可判断四边形DBEF为平行四边形,然后计算平行四边形的周长即可.
    【详解】
    解:∵D、E、F分别为AB、BC、AC中点,
    ∴DF=BC=1,DF∥BC,EF=AB=,EF∥AB,
    ∴四边形DBEF为平行四边形,
    ∴四边形DBEF的周长=2(DF+EF)=2×(1+)=1.
    故选A.
    本题考查三角形中位线定理和四边形的周长,解题的关键是掌握三角形中位线定理.
    5、C
    【解析】
    按照二次根式的运算法则对各项分别进行计算,求得结果后进行判断即可.
    【详解】
    A.与不是同类二次根式,不能合并,故此选项错误;
    B.,故此选项错误;
    C.,正确;
    D.不能化简了,故此选项错误.
    故选:C.
    此题需要注意的是:二次根式的加减运算实质是合并同类二次根式的过程,不是同类二次根式的不能合并.
    6、B
    【解析】
    先解不等式求得不等式的解集,再确定正整数解即可.
    【详解】
    3(x+1)>2(2x+1)-6
    3x+3>4x+2-6
    3x-4x>2-6-3
    -x>-7
    x<7
    ∴不等式的正整数解为1、2、3、4、5、6,共6个.
    故选B.
    本题考查了求一元一次不等式的正整数解,正确求得不等式的解集是解决本题的关键.
    7、B
    【解析】
    设u=,利用求根公式得到关于u的两个一元二次方程,并且这两个方程都有实根,所以由判别式大于或等于1即可得到ab≤.
    【详解】
    因为方程有实数解,故b2-4ac≥1.
    由题意有:或,设u=,
    则有2au2-u+b=1或2au2+u+b=1,(a≠1),
    因为以上关于u的两个一元二次方程有实数解,
    所以两个方程的判别式都大于或等于1,即得到1-8ab≥1,
    所以ab≤.
    故选B.
    本题考查了一元二次方程ax2+bx+c=1(a≠1,a,b,c为常数)的求根公式:x=(b2-4ac≥1).
    8、D
    【解析】
    方程移项变形后,利用完全平方公式化简得到结果,即可做出判断.
    【详解】
    方程移项得:,
    配方得:,
    即,
    故选D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    首先证明四边形ABEF是菱形,然后求出AE即可解决问题.
    【详解】
    解:连接AE,交BF于点O.
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,即AF∥BE,
    ∵EF∥AB,
    ∴四边形ABEF是平行四边形,
    ∵AF∥BE,
    ∴∠AFB=∠FBE,
    ∵BF平分∠ABC,
    ∴∠ABF=∠CBF,
    ∴∠ABF=∠AFB,
    ∴AB=AF,
    ∴平行四边形ABEF是菱形,连接AE交BF于O,
    ∴AE⊥BF,OB=OF=3,OA=OE,
    在Rt△AOB中,OA==4,
    ∴AE=2OA=8,
    ∴S菱形ABEF=•AE•BF=1.
    故答案为1.
    本题考查菱形的性质和判定,平行四边形的性质和判定,勾股定理,等腰三角形的性质,平行线的性质等知识点的应用,能综合运用性质和判定进行推理是解此题的关键,难度适中.
    10、8
    【解析】
    利用菱形的性质根据勾股定理求得AO的长,然后求得AC的长即可.
    【详解】
    如图,
    ∵四边形ABCD是菱形,
    ∴AC⊥BD,AO=CO,BO=DO
    ∵BD=6,
    ∴BO=3,
    ∵周长为20,
    ∴AB=5,
    由勾股定理得:AO==4,
    ∴AC=8,
    故答案为:8
    本题主要考查了菱形的性质,解题的关键是菱形问题转化为直角三角形问题求解.
    11、4
    【解析】
    根据二次根式与平方的非负性即可求解.
    【详解】
    依题意得m-3=0,n+1=0,解得m=3,n=-1,
    ∴m-n=4
    此题主要考查二次根式与平方的非负性,解题的关键是熟知二次根式与平方的非负性.
    12、
    【解析】
    :把a看作常数,根据分式方程的解法求出x的表达式,再根据方程的解是负数列不等式组并求解即可:
    【详解】
    解:∵

    ∵关于x的方程的解是负数


    解得
    本题考查了分式方程的解与解不等式,把a看作常数求出x的表达式是解题的关键.
    13、
    【解析】
    【分析】由矩形的性质可知∠D=90°,AD=BC=8,DC=AB,AD//BC,继而根据已知可得AB=AE=5,再利用勾股定理即可求得CE的长.
    【详解】∵四边形ABCD是矩形,
    ∴∠D=90°,AD=BC=8,DC=AB,AD//BC,
    ∴∠AEB=∠EBC,
    又∵∠ABE=∠EBC,
    ∴∠ABE=∠AEB,
    ∴AB=AE=5,
    ∴DC=5,DE=AD-AE=3,
    ∴CE=,
    故答案为.
    【点睛】本题考查了矩形的性质,勾股定理的应用,求出AB的长是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)见解析;(2)见解析,周长为:+2.
    【解析】
    (1)利用数形结合的思想画出边长为 菱形即可.
    (2)利用数形结合的思想解决问题即可.
    【详解】
    解:(1)∵菱形周长为,
    ∴菱形的边长为,
    如图1所示,菱形ABCD即为所求.
    (2)如图2中,平行四边形MNPQ即为所求.
    ∵如图所示,∠MNP=45°,∠MPN=90°,
    ∴NP=MP,
    又∵面积为9,
    ∴NP∙MP=9,
    ∴NP=MP=3,
    ∴MN=,
    ∴周长为:+2.
    本题考查菱形的判定和性质,平行四边形的判定和性质,数形结合的思想等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    15、 (1)证明见解析;(2)S=m(m>0);(3)满足条件的F坐标为(,2)或(,4).
    【解析】
    (1)只要证明△ABO≌△CBE,可得AB=BE,即可解决问题;
    (2)在Rt△AOB中利用勾股定理求出AB,证明△ABO∽△CBE,利用相似三角形的性质求出BE即可解决问题;
    (3)分两种情形I.当点A与D重合时,II.当点G在BC边上时,画出图形分别利用直角三角形和等边三角形求解即可.
    【详解】
    解:(1)如图1中,
    ∵m=,B(,0),
    ∴D(0,),
    ∴OD=OB=,
    ∴矩形OBCD是正方形,
    ∴BO=BC,
    ∵∠OBC=∠ABE=90°,
    ∴∠ABO=∠CBE,∵∠BOA=∠BCE=90°,
    ∴△ABO≌△CBE,
    ∴AB=BE,
    ∵四边形ABEF是平行四边形,
    ∴四边形ABEF是菱形,
    ∵∠ABE=90°,
    ∴四边形ABEF是正方形.
    (2)如图1中,
    在Rt△AOB中,∵OA=1,OB=,
    ∴AB==2,
    ∵∠OBC=∠ABE=90°,
    ∴∠OBA=∠CBE,
    ∵∠BOA=∠BCE=90°,
    ∴△ABO∽△CBE,
    ∴,
    ∴ ,
    ∴BE=m,
    ∴S=AB•BE=m(m>0).
    (3)①如图2中,当点A与D重合时,点G在矩形OBCD的边CD上.
    ∵tan∠ABO=,
    ∴∠ABO=30°,
    在Rt△ABE中,∠BAE=∠ABO=30°,AB=2,
    ∴AE=,
    ∵AG=GE,
    ∴AG=,
    ∴G(,1),设F(m,n),
    则有,,
    ∴m=,n=2,
    ∴F(,2).
    ②如图3中,当点G在BC边上时,作GM⊥AB于M.
    ∵四边形ABEF是矩形,
    ∴GB=GA,
    ∵∠GBO=90°,∠ABO=30°,
    ∴∠ABG=60°,
    ∴△ABG是等边三角形,
    ∴BG=AB=2,
    ∵FG=BG,
    ∴F(,4),
    综上所述,满足条件的F坐标为(,2)或(,4).
    本题考查四边形综合题、矩形的性质、正方形的判定和性质、全等三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.
    16、 (1)围成长为1cm、宽为8cm的矩形;(2)不能围成一个面积为145cm2的矩形.
    【解析】
    设矩形的一边长为xcm,则该边的邻边长为(24﹣x)cm.
    (1)根据矩形的面积公式结合矩形的面积为128cm2,即可得出关于x的一元二次方程,解之即可得出结论;
    (2)根据矩形的面积公式结合矩形的面积为145cm2,即可得出关于x的一元二次方程,由根的判别式△=﹣4<3,即可得出不能围成一个面积为145cm2的矩形.
    【详解】
    解:设矩形的一边长为xcm,则该边的邻边长为(24﹣x)cm.
    (1)根据题意得:x(24﹣x)=128,
    解得:x1=1,x2=8,
    ∴24﹣x=8或1.
    答:围成长为1cm、宽为8cm的矩形,该矩形的面积为128cm2.
    (2)根据题意得:x(24﹣x)=145,
    整理得:x2﹣24x+145=3.
    ∵△=(﹣24)2﹣4×1×145=﹣4<3,
    ∴此方程无实根,
    ∴不能围成一个面积为145cm2的矩形.
    本题主要考查一元二次方程的应用,能够根据题意列出方程,并利用根的判别式判断根的情况是解题的关键.
    17、10+
    【解析】
    先运用勾股定理求出AC的长度,从而利用勾股定理的逆定理判断出△ABC是直角三角形,然后可将S四边形ABCD=S△ABC+S△ACD进行求解.
    【详解】
    解:在△ACD中,AC⊥CD,AD=2,∠D=30°,
    ∴AC=,
    ∴CD=,
    在△ABC中,AB2+BC2=42+52=41,AC2=41,
    ∴AB2+BC2=AC2,
    ∴△ABC是直角三角形,且∠ABC=90°,
    ∴S四边形ABCD=S△ABC+S△ACD=AB·BC+AC·CD=10+.
    本题考查了勾股定理及其逆定理,解答本题的关键是判断出△ABC是直角三角形.
    18、(1)点,点;(2)点;(3)①P(0,5),移动时间为秒;②P(,6),移动时间为秒;③P(4,1),移动时间为:秒;④P(,0),移动时间为:秒
    【解析】
    (1)根据点A,点C的位置即可解答;
    (2)根据点P的速度及移动时间即可解答;
    (3)对点P的位置分类讨论,根据三角形的面积计算公式即可解答.
    【详解】
    解:(1)点在轴上,点在轴上,
    ∴m+2=0,n-1=0,
    ∴m=-2,n=1.
    ∴点,点
    (2)由(1)可知:点,点
    当点移动了秒时,移动的路程为:4×2=8,
    ∴此时点P在CB上,且CP=2,
    ∴点.
    (3)①如图1所示,当点P在OC上时,
    ∵△OBP的面积为10,
    ∴,即,解得OP=5,
    ∴点P的坐标为(0,5),运动时间为:(秒)
    ②如图2所示,当点P在BC上时,
    ∵△OBP的面积为10,
    ∴,即,解得BP=,
    ∴CP=
    ∴点P的坐标为(,6),运动时间为:(秒)
    ③如图3所示,当点P在AB上时,
    ∵△OBP的面积为10,
    ∴,即,解得BP=5,
    ∴AP=1
    ∴点P的坐标为(4,1),运动时间为:(秒)
    ④如图4所示,当点P在OA上时,
    ∵△OBP的面积为10,
    ∴,即,解得OP=,
    ∴点P的坐标为(,0),运动时间为:(秒)
    综上所述:①P(0,5),移动时间为秒;②P(,6),移动时间为秒;③P(4,1),移动时间为:秒;④P(,0),移动时间为:秒.
    本题考查了平面直角坐标系中的坐标及动点运动问题,解题的关键是熟知平面直角坐标系中点的特点及动点的运动情况.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.0.00000012=.
    20、25°
    【解析】
    由等腰三角形性质得∠ACB=∠B=由平行四边形性质得∠DAE=∠ACB=65〬,由垂直定义得∠ADE=90〬-∠DAE=90〬-65〬.
    【详解】
    因为,,
    所以,∠ACB=∠B=
    因为,四边形ABCD是平行四边形,
    所以,AD∥BC,
    所以,∠DAE=∠ACB=65〬,
    又因为,,
    所以,∠ADE=90〬-∠DAE=90〬-65〬=25〬.
    故答案为25〬
    本题考核知识点:平行四边形,等腰三角形,垂直定义. 解题关键点:由所求推出必知,逐步解决问题.
    21、①②③④
    【解析】
    根据翻折变换的性质和正方形的性质可证△ABG≌△AFG;由①和翻折的性质得出△ABG≌△AFG,△ADE≌△AFE,即可得出;在直角△ECG中,根据勾股定理可证BG=GC;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF.
    【详解】
    解:①正确,∵四边形ABCD是正方形,将△ADE沿AE对折至△AFE,
    ∴AB=AD=AF,
    在△ABG与△AFG中,;
    △ABG≌△AFG(SAS);
    ②正确,
    ∵由①得△ABG≌△AFG,
    又∵折叠的性质,△ADE≌△AFE,
    ∴∠BAG =∠FAG,∠DAE=∠EAF,
    ∴∠EAG=∠FAG+∠EAF=90°×=45°;
    ③正确,
    ∵EF=DE=CD=2,
    设BG=FG=x,则CG=6-x,
    在直角△ECG中,
    根据勾股定理,得(6-x)2+42=(x+2)2,
    解得x=3,
    ∴BG=3=6-3=GC;
    ④正确,
    ∵CG=BG=GF,
    ∴△FGC是等腰三角形,∠GFC=∠GCF,
    又∠AGB=∠AGF,∠AGB+∠AGF=180°-∠FGC=∠GFC+∠GCF,
    ∴∠AGB=∠AGF=∠GFC=∠GCF,
    ∴AG∥CF;
    本题考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,此题综合性较强,难度较大,解题的关键是注意数形结合思想应用.
    22、1.
    【解析】
    试题分析:根据菱形的对角线互相平分可得OB=OD,然后判断出OE是△ABD的中位线,再根据三角形的中位线等于第三边的一半求出AD,然后根据菱形的周长进行计算即可得解.
    解:在菱形ABCD中,OB=OD,
    ∵E为AB的中点,
    ∴OE是△ABD的中位线,
    ∵OE=3,
    ∴AD=2OE=2×3=6,
    ∴菱形ABCD的周长为4×6=1.
    故答案为1.
    考点:菱形的性质.
    23、26cm
    【解析】
    先根据平移的性质得DF=AC,AD=CF=3cm,再由△ABC的周长为20cm得到AB+BC+AC=20cm,然后利用等线段代换可计算出AB+BC+CF+DF+AD=26(cm),于是得到四边形ABFD的周长为26cm.
    【详解】
    ∵△ABC沿BC方向平移3cm得到△DEF,
    ∴DF=AC,AD=CF=3cm,
    ∵△ABC的周长为20cm,即AB+BC+AC=20cm,
    ∴AB+BC+CF+DF+AD=AB+BC+AC+AD+CF=20+3+3=26(cm),
    即四边形ABFD的周长为26cm.
    故答案是:26cm.
    考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.
    二、解答题(本大题共3个小题,共30分)
    24、(1)这次被调查的学生有50人;(2)m=0.2,n=10,p=20,见解析;(3)全校学生中利用手机购物或玩游戏的共有400人,可利用手机学习.
    【解析】
    (1)根据C的人数除以C所占的百分比,可得答案;
    (2)根据人数比抽查人数,所占的百分比乘以抽查人数,可得答案;
    (3)根据样本估计总体,可得答案.
    【详解】
    (1)从C可看出5÷0.1=50人,
    答:这次被调查的学生有50人;
    (2)m==0.2,n=0.2×50=10,p=0.4×50=20,

    (3)800×(0.1+0.4)=800×0.5=400人,
    答:全校学生中利用手机购物或玩游戏的共有400人,可利用手机学习.
    本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
    25、如图所示:
    【解析】
    试题分析:(1)底边长为4,面积为8,即高也要为4,所以就从网格中找一条为4的底边,找这个边的垂直平分线,也为4的点,即是三角形的顶点;
    (2)面积为10的等腰直角三角形,根据三角形的面积公式可知,两直角边要为,那就是找一个长为4,宽为2的矩形的对角线为直角边,然后连接斜边;
    (3)画一个面积为12的矩形后再通过平移一对对边得到平行四边形.
    考点:基本作图
    点评:基本作图是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.
    26、(1)见解析;(2)BG=CG;(3)GH=.
    【解析】
    (1)先计算出DE=2,EC=4,再根据折叠的性质AF=AD=6,EF=ED=2,∠AFE=∠D=90°,∠FAE=∠DAE,然后根据“HL”可证明Rt△ABG≌Rt△AFG;
    (2)由全等性质得GB=GF、∠BAG=∠FAG,从而知∠GAE=∠BAD=45°、GE=GF+EF=BG+DE;设BG=x,则GF=x,CG=BC﹣BG=6﹣x,在Rt△CGE中,根据勾股定理得(6﹣x)2+42=(x+2)2,解之可得BG=CG=3;
    (3)由(2)中结果得出GF=3、GE=5,证△FHG∽△ECG得=,代入计算可得.
    【详解】
    (1)∵正方形ABCD的边长为6,CE=2DE,
    ∴DE=2,EC=4,
    ∵把△ADE沿AE折叠使△ADE落在△AFE的位置,
    ∴AF=AD=6,EF=ED=2,∠AFE=∠D=90°,∠FAE=∠DAE,
    在Rt△ABG和Rt△AFG中
    ∵ ,
    ∴Rt△ABG≌Rt△AFG(HL);
    (2)∵Rt△ABG≌Rt△AFG,
    ∴GB=GF,∠BAG=∠FAG,
    ∴∠GAE=∠FAE+∠FAG=∠BAD=45°,
    设BG=x,则GF=x,CG=BC﹣BG=6﹣x,
    在Rt△CGE中,GE=x+2,EC=4,CG=6﹣x,
    ∵CG2+CE2=GE2,
    ∴(6﹣x)2+42=(x+2)2,解得x=3,
    ∴BG=3,CG=6﹣3=3
    ∴BG=CG;
    (3)由(2)知BG=FG=CG=3,
    ∵CE=4,
    ∴GE=5,
    ∵FH⊥CG,
    ∴∠FHG=∠ECG=90°,
    ∴FH∥EC,
    ∴△FHG∽△ECG,
    则=,即=,
    解得GH=.
    本题考查了四边形的综合问题,解题的关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了三角形全等的判定与性质、勾股定理和正方形的性质.
    题号





    总分
    得分
    相关试卷

    2025届唐山市林西中学数学九上开学统考模拟试题【含答案】: 这是一份2025届唐山市林西中学数学九上开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届河北省唐山市名校数学九上开学统考试题【含答案】: 这是一份2025届河北省唐山市名校数学九上开学统考试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届河北省唐山市路北区数学九上开学预测试题【含答案】: 这是一份2025届河北省唐山市路北区数学九上开学预测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map