2023-2024学年河北省唐山市友谊中学数学九上期末达标检测模拟试题含答案
展开
这是一份2023-2024学年河北省唐山市友谊中学数学九上期末达标检测模拟试题含答案,共7页。试卷主要包含了解方程22=3的最适当的方法是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题3分,共30分)
1.在正方形ABCD中,AB=3,点E在边CD上,且DE=1,将△ADE沿AE对折到△AFE,延长EF交边BC于点G,连接AG,CF.下列结论,其中正确的有( )个.
(1)CG=FG;(2)∠EAG=45°;(3)S△EFC=;(4)CF=GE
A.1B.2C.3D.4
2.在如图所示的网格纸中,有A、B两个格点,试取格点C,使得△ABC是等腰三角形,则这样的格点C的个数是( )
A.4B.6C.8D.10
3.已知反比例函数y=的图象经过点(3,2),那么下列四个点中,也在这个函数图象上的是( )
A.(3,-2)B.(-2,-3)C.(1,-6)D.(-6,1)
4.下列四个函数中,y的值随着x值的增大而减小的是( )
A.y=2xB.y=x+1C.y=(x>0)D.y=x2(x>0)
5.下列说法正确的是( ).
A.一颗质地均匀的骰子已连续抛掷了2000次.其中,抛掷出5点的次数最多,则第2001次一定抛掷出5点.
B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖
C.天气预报说:明天下雨的概率是50%,所以明天将有一半时间在下雨
D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等
6.如图,为的直径,为上一点,弦平分,交于点,,,则的长为( )
A.2.5B.2.8C.3D.3.2
7.如图,⊙是的外接圆,已知平分交⊙于点,交于点,若,,则的长为( )
A.B.C.D.
8.若关于x的不等式组无解,则a的取值范围是( )
A.a≤﹣3B.a<﹣3C.a>3D.a≥3
9.解方程2(5x-1)2=3(5x-1)的最适当的方法是 ( )
A.直接开平方法.B.配方法C.公式法D.分解因式法
10.两个连续奇数的积为323,求这两个数.若设较小的奇数为,则根据题意列出的方程正确的是( )
A.B.
C.D.
二、填空题(每小题3分,共24分)
11.已知,则的值为_______.
12.飞机着陆后滑行的距离(单位:)关于滑行的时间(单位:)的函数解析式是,飞机着陆后滑行______才能停下来.
13.某小区2019年的绿化面积为3000m2,计划2021年的绿化面积为4320m2,如果每年绿化面积的增长率相同,设增长率为x,则可列方程为______.
14.如图,AC是⊙O的直径,弦BD⊥AC于点E,连接BC过点O作OF⊥BC于点F,若BD=12cm,AE=4cm,则OF的长度是___cm.
15.已知x=2是方程x2-a=0的解,则a=_______.
16.一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同,从中随机摸出一个球,摸到红球的概率是______.
17.等腰Rt△ABC中,斜边AB=12,则该三角形的重心与外心之间的距离是_____.
18.抛物线y=x2+2x+3的顶点坐标是_____________.
三、解答题(共66分)
19.(10分)如图,已知O是坐标原点,B,C两点的坐标分别为(3,-1),(2,1).
(1)以O点为位似中心,在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;
(2)如果△OBC内部一点M的坐标为(x,y),写出B,C,M的对应点B′,C′,M′的坐标.
20.(6分)解方程:
(1)3x(x-2)=4(x-2);
(2)2x2-4x+1=0
21.(6分)如图,在平面直角坐标系中,己知二次函数的图像与y轴交于点B(0, 4),与x轴交于点A(-1,0)和点D.
(1)求二次函数的解析式;
(2)求抛物线的顶点和点D的坐标;
(3)在抛物线上是否存在点P,使得△BOP的面积等于?如果存在,请求出点P的坐标?如果不存在,请说明理由.
22.(8分)解方程:
(1)x2-8x+6=0
(2)x 12 3x 1 0
23.(8分)问题情境:在综合实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图(1),将一张菱形纸片ABCD(∠BAD=60°)沿对角线AC剪开,得到△ABC和△ACD
操作发现:(1)将图(1)中的△ABC以A为旋转中心,顺时针方向旋转角α(0°<α<60°)得到如图(2)所示△ABC′,分别延长BC′和DC交于点E,发现CE=C′E.请你证明这个结论.
(2)在问题(1)的基础上,当旋转角α等于多少度时,四边形ACEC′是菱形?请你利用图(3)说明理由.
拓展探究:(3)在满足问题(2)的基础上,过点C′作C′F⊥AC,与DC交于点F.试判断AD、DF与AC的数量关系,并说明理由.
24.(8分)车辆经过润扬大桥收费站时,有A、B、C、D四个收费通道,假设车辆通过每个收费通道的可能性相同,车辆可随机选择一个通过.
(1)一辆车经过此收费站时,A通道通过的概率为 ;
(2)两辆车经过此收费站时,用树状图或列表法求选择不同通道通过的概率.
25.(10分)已知:如图,抛物线y=﹣x2+2x+3交x轴于点A、B,其中点A在点B的左边,交y轴于点C,点P为抛物线上位于x轴上方的一点.
(1)求A、B、C三点的坐标;
(2)若△PAB的面积为4,求点P的坐标.
26.(10分)我市某公司用800万元购得某种产品的生产技术后,进一步投入资金1550万元购买生产设备,进行该产品的生产加工,已知生产这种产品每件还需成本费40元.经过市场调研发现:该产品的销售单价需要定在200元到300元之间较为合理.销售单价(元)与年销售量(万件)之间的变化可近似的看作是如下表所反应的一次函数:
(1)请求出与之间的函数关系式,并直接写出自变量的取值范围;
(2)请说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最少亏损是多少?
参考答案
一、选择题(每小题3分,共30分)
1、C
2、C
3、B
4、C
5、D
6、B
7、A
8、A
9、D
10、B
二、填空题(每小题3分,共24分)
11、
12、200
13、3000(1+ x)2=1
14、.
15、4
16、
17、1.
18、(﹣1,2)
三、解答题(共66分)
19、 (1)如图所示见解析;(2)B′(-6,2),C′(-4,-2),M′(-2x,-2y).
20、(1)x1=2,x2=;(2),.
21、(1);(2)D的坐标为(3,0),顶点坐标为(1,);(3)满足条件的点P有两个,坐标分别为P1(,)、P2().
22、(1)x1=,x2=-(2) x1=1,x2=1.
23、(1)见解析;(2)当α=30°时,四边形AC′EC是菱形,理由见解析;(3)AD+DF=AC,理由见解析
24、(1);(2)
25、(1)A(﹣1,0),B(3,0),C(0,3);(2)P点坐标为(1﹣,2),(1+,2)
26、(1);(2)亏损,赔了110万元
销售单价(元)
200
230
250
年销售量(万件)
14
11
9
相关试卷
这是一份2023-2024学年鸡西市重点中学数学九上期末达标检测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
这是一份2023-2024学年四川省广安市友谊中学数学九年级第一学期期末达标检测模拟试题含答案,共7页。
这是一份河北省邯郸市磁县2023-2024学年九上数学期末达标检测模拟试题含答案,共7页。试卷主要包含了若,则,矩形不具备的性质是等内容,欢迎下载使用。