河北省唐山市二中学2024年九年级数学第一学期开学质量检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列图案中,不是中心对称图形的是( )
A.
B.
C.
D.
2、(4分)下列图形中,既是轴对称图图形又是中心对称图形的是( )
A.B.C.D.
3、(4分)在直角三角形中,如果有一个角是30°,那么下列各比值中,是这个直角三角形的三边之比的是()
A.1∶2∶3B.2∶3∶4
C.1∶4∶9D.1∶∶2
4、(4分)某班位男同学所穿鞋子的尺码如下表所示,则鞋子尺码的众数和中位数分别是( )
A.B.C.D.
5、(4分)已知,如图一次函数y1=ax+b与反比例函数y2= 的图象如图示,当y1<y2时,x的取值范围是( )
A.x<2 B.x>5 C.2<x<5 D.0<x<2或x>5
6、(4分)关于的方程有两个不相等的实根、,且有,则的值是( )
A.1B.-1C.1或-1D.2
7、(4分)已知一次函数. 若随的增大而增大,则的取值范围是( )
A.B.C.D.
8、(4分)如图,在△ABC中,∠A=90°,AB=AC,∠ABC的角平分线交AC于D,BD=4,过点C作CE⊥BD交BD的延长线于E,则CE的长为( )
A.B.2C.3D.2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知等腰三角形的两条边长分别是3cm、7cm,那么这个等腰三角形的周长是________cm.
10、(4分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为
11、(4分)如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=24,BD=10,DE⊥BC,垂足为点E,则DE=_______.
12、(4分)一次函数的图象经过点,且与轴、轴分别交于点、,则的面积等于___________.
13、(4分)Rt△ABC与直线l:y=﹣x﹣3同在如图所示的直角坐标系中,∠ABC=90°,AC=2,A(1,0),B(3,0),将△ABC沿x轴向左平移,当点C落在直线l上时,线段AC扫过的面积等于_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,一次函数的图象与反比例函数在第一象限的图象交于和B两点,与x轴交于点C.
(1)求反比例函数的解析式;
(2)若点P在x轴上,且的面积为5,求点P的坐标.
15、(8分)如图,在矩形中,、相交于点,过点作的平行线交的延长线于点.
(1)求证:.
(2)过点作于点,并延长交于点,连接.若,,求四边形的周长.
16、(8分)如图1,已知四边形ABCD是正方形,对角线AC、BD相交于点E,以点E为顶点作正方形EFGH.
(1)如图1,点A、D分别在EH和EF上,连接BH、AF,BH和AF有何数量关系,并说明理由;
(2)将正方形EFGH绕点E顺时针方向旋转,如图2,判断BH和AF的数量关系,并说明理由.
17、(10分)(1)若k是正整数,关于x的分式方程的解为非负数,求k的值;
(2)若关于x的分式方程总无解,求a的值.
18、(10分)如图,△ABC是等腰直角三角形,延长BC至E使BE=BA,过点B作BD⊥AE于点D,BD与AC交于点F,连接EF.
(1)求证:BF=2AD;
(2)若CE=,求AC的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)经过多边形一个顶点共有5条对角线,若这个多边形是正多边形,则它的每一个外角是__度.
20、(4分)若方程的两根,则的值为__________.
21、(4分)如图,正方形A1B1C1O,A2B2C2C1,A3B3C3C2, ……,按如图的方式放置.点A1,A2,A3,……和点C1,C2,C3……分别在直线y=x +1和x轴上,则点A6的坐标是____________.
22、(4分)已知:正方形ABCD的边长为8,点E、F分别在AD、CD上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为_____.
23、(4分)函数y=中自变量x的取值范围是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)解方程:
(1);
(2)
25、(10分)请用无刻度尺的直尺分别按下列要求作图(保留作图痕迹).
(1)图1中,点是的所在边上的中点,作出的边上中线.
(2)如图,中,,且,是它的对角线,在图2中找出的中点;
(3)图3是在图2的基础上已找出的中点,请作出的边上的中线.
26、(12分)已知y﹣2与x+1成正比例函数关系,且x=﹣2时,y=1.
(1)写出y与x之间的函数关系式;
(2)求当x=﹣3时,y的值;
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据概念,知
A、B、D既是轴对称图形,也是中心对称图形;
C、既不是轴对称图形,也不是中心对称图形.
故选C.
2、D
【解析】
结合轴对称图形和中心对称图形的定义求解观察各个图形,即可完成解答.
【详解】
A、不是轴对称图形,是中心对称图形,故A错误;
B、是轴对称图形,但不是中心对称图形,故B错误;
C、既不是轴对称图形,也不是中心对称图形,故C正确;
D、既是轴对称图形又是中心对称图形,故D正确.
故选D.
本题考查图形对称性的判断, 中心对称图形满足绕着中心点旋转180°后能与自身重合,而若一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形就是轴对称图形.
3、D
【解析】
设30°角所对的直角边为a,根据30°角所对的直角边等于斜边的一半求出斜边的长度,再利用勾股定理求出另一条边的长度,然后即可求出比值.
解:如图所示,
设30°角所对的直角边BC=a,
则AB=1BC=1a,
∴AC=,
∴三边之比为a:a:1a=1::1.
故选D.
“点睛”本题主要考查了含30度角的直角三角形的边的关系,勾股定理,是基础题,作出草图求解更形象直观.
4、C
【解析】
众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
【详解】
解:数据1出现了10次,次数最多,所以众数为1,
一共有20个数据,位置处于中间的数是:1,1,所以中位数是(1+1)÷2=1.
故选:C.
本题考查了确定一组数据的中位数和众数的能力.解题的关键是熟练掌握求中位数和众数的方法.
5、D
【解析】
根据图象得出两交点的横坐标,找出一次函数图象在反比例图象下方时x的范围即可.
【详解】
根据题意得:当y1<y2时,x的取值范围是0<x<2或x>1.
故选D.
本题考查了反比例函数与一次函数的交点问题,利用了数形结合的思想,灵活运用数形结合思想是解答本题的关键.
6、B
【解析】
根据根的判别式及一元二次方程的定义求得a的取值范围,再根据一元二次方程根与系数的关系求得的值,再利用列出以a为未知数的方程,解方程求得a值,由此即可解答.
【详解】
∵关于的方程有两个不相等的实根、,
∴△=(3a+1)2-8a(a+1)=(a-1)2>0,, a≠0,
∴a≠1且a≠0 ,
∵,
∴,
解得a=±1,
∴a=-1.
故选B.
本题主要考查了根与系数的关系、根的判别式,利用根的判别式确定a的取值及利用根与系数的关系列出方程求得a的值是解决问题的关键.
7、B
【解析】
∵随的增大而增大,
∴ ,
,故选B.
8、B
【解析】
延长CE与BA延长线交于点F,首先证明△BAD≌△CAF,根据全等三角形的性质可得BD=CF,再证明△BEF≌△BCE可得CE=EF,进而可得CE=BD,即可得出结果.
【详解】
证明:延长CE与BA延长线交于点F,
∵∠BAC=90°,CE⊥BD,
∴∠BAC=∠DEC,
∵∠ADB=∠CDE,
∴∠ABD=∠DCE,
在△BAD和△CAF中,
,
∴△BAD≌△CAF(ASA),
∴BD=CF,
∵BD平分∠ABC,CE⊥DB,
∴∠FBE=∠CBE,
在△BEF和△BCE中,
,
∴△BEF≌△BCE(AAS),
∴CE=EF,
∴DB=2CE,即CE=BD=×4=2,
故选:B.
本题考查了全等三角形的判定与性质、角平分线定义,熟练掌握全等三角形的判定方法,全等三角形对应边相等是解题的关
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
解∵等腰三角形的两条边长分别是3cm、7cm,
∴当此三角形的腰长为3cm时,3+3<7,不能构成三角形,故排除,
∴此三角形的腰长为7cm,底边长为3cm,
∴此等腰三角形的周长=7+7+3=1cm,
故答案为:1.
10、
【解析】
试题解析:∵AH=2,HB=1,
∴AB=AH+BH=3,
∵l1∥l2∥l3,
∴
考点:平行线分线段成比例.
11、
【解析】
试题分析:根据菱形性质得出AC⊥BD,AO=OC=12,BO=BD=5,根据勾股定理求出AB,根据菱形的面积得出S菱形ABCD=×AC×BD=AB×DE,代入求出即可.
【详解】
∵四边形ABCD是菱形,AC=24,BD=10,
∴AC⊥BD,AO=OC=AC=12,BO=BD=5,
在Rt△AOB中,由勾股定理得:AB=13,
∵S菱形ABCD=×AC×BD=AB×DE,
∴×24×10=13DE,
∴DE=,
故答案为.
本题考查的是菱形的性质及等面积法,掌握菱形的性质,灵活运用等面积法是解题的关键.
12、
【解析】
∵一次函数y=−2x+m的图象经过点P(−2,3),
∴3=4+m,
解得m=−1,
∴y=−2x−1,
∵当x=0时,y=−1,
∴与y轴交点B(0,−1),
∵当y=0时,x=−,
∴与x轴交点A(−,0),
∴△AOB的面积:×1×=.
故答案为.
点睛:首先根据待定系数法求得一次函数的解析式,然后计算出与x轴交点,与y轴交点的坐标,再利用三角形的面积公式计算出面积即可.
13、1
【解析】
根据题意作出图形,利用勾股定理求出BC,求出C’的坐标,再根据矩形的面积公式即可求解.
【详解】
解:∵∠ABC=90°,AC=2,A(1,0),B(3,0),
∴AB=2,
∴BC==4,
∴点C的坐标为(3,4),
当y=4时,4=﹣x﹣3,得x=﹣7,
∴C′(﹣7,4),
∴CC′=10,
∴当点C落在直线l上时,线段AC扫过的面积为:10×4=1,
故答案为:1.
此题主要考查平移的性质,解题的关键是熟知一次函数的图像与性质.
三、解答题(本大题共5个小题,共48分)
14、(1) (2)P的坐标为或
【解析】
(1)利用点A在上求a,进而代入反比例函数求k即可;
(2)设,求得C点的坐标,则,然后根据三角形面积公式列出方程,解方程即可.
【详解】
(1)把点代入,得,
∴
把代入反比例函数,
∴;
∴反比例函数的表达式为;
(2)∵一次函数的图象与x轴交于点C,
∴,
设,
∴,
∴,
∴或,
∴P的坐标为或.
本题考查了反比例函数与一次函数的交点问题,用待定系数法求出反比例函数的解析式等知识点,能用待定系数法求出反比例函数的解析式是解此题的关键.
15、(1)证明见解析;(2).
【解析】
(1)根据两组对边分别平行且的四边形是平行四边形判断出四边形BEAD是平行四边形,再根据平行四边形对边相等和矩形对边相等即可得出结论;
(2)根据矩形的对角线相等且互相平分及直角三角形斜边上的中线等于斜边的一半可得OB=OC=OG,利用勾股定理求出BC,CO的长.证明BF为△CEG的中位线,再由三角形中位线定理可得EG=2BF,最后根据四边形的周长公式列式计算即可得解.
【详解】
(1)∵AE∥DB,AD∥EB,∴四边形BEAD是平行四边形,∴BE=DA.
∵四边形ABCD是矩形,∴BC=AD,∴BE=BC;
(2)∵四边形ABCD是矩形,∴OA=OB=OCAC.
∵AE∥DB,CF⊥BO,∴CG⊥AE,∴GO为Rt△CGA斜边的中线,∴GOAC=OB,∴BO+OG=BD.
∵CF=3,BF=1,∴BE=BC=.
设CO=x,则FO=BO-BF=x-1.在Rt△CFO中,∵,∴,解得:x=7.5,∴BO+OG=BD=2x=2.
∵OG=CO,OF⊥CG,∴FG=CF=3.
∵CB=BE,∴BF为△CEG的中位线,∴EG=2BF=3,∴四边形BOGE的周长=BO+OG+EG+EB=2+3+=.
本题考查了平行四边形的判定与性质,矩形的性质,直角三角形斜边上的中线等于斜边的一半以及三角形中位线定理,熟记各性质并利用勾股定理列出方程是解题的关键.
16、(1)BH=AF,见解析;(2)BH=AF,见解析.
【解析】
(1)根据正方形的性质可得AE=BE,∠BEH=∠AEF=90°,然后利用“边角边”证明△BEH和△AEF全等,根据全等三角形对应边相等即可得证;
(2)根据正方形的性质得到AE=BE,∠BEA=90°,EF=EH,∠HEF=90°,然后利用“边角边”证明△BEH和△AEF全等,根据全等三角形的性质即可得到结论.
【详解】
(1)BH=AF,理由如下:
在正方形ABCD中,AE=BE,∠BEH=∠AEF=90°,
∵四边形EFGH是正方形,
∴EF=EH,
在△BEH和△AEF中,
,
∴△BEH≌△AEF(SAS),
∴BH=AF;
(2)BH=AF,理由如下:
∵四边形ABCD是正方形,
∴AE=BE,∠BEA=90°,
∵四边形EFGH是正方形,
∴EF=EH,∠HEF=90°,
∴∠BEA+∠AEH=∠HEF+∠AEH,
即∠BEH=∠AEF,
在△BEH与△AEF中,
,
∴△BEH≌△AEF(SAS),
∴BH=AF.
本题考查了正方形的性质,旋转的性质,全等三角形的判定和性质,准确找到全等三角形是解题的关键.
17、(1);(2)的值-1,2.
【解析】
(1)分式方程去分母转化为整式方程,表示出整式方程的解,由解为非负数求出k的范围,即可确定出正整数k的值;
(2)分式方程去分母转化为整式方程,分类讨论a的值,使分式方程无解即可.
【详解】
解:(1)由得:,
化简得:,
因为x是非负数,所以,即,
又是正整数,所以;
(2)去分母得:,即,
若,显然方程无解;
若,,
当时,不存在;
当时,,
综合上述:的值为-1,2.
此题考查了分式方程的解,始终注意分式分母不为0这个条件.
18、(1)见解析;(2)2+
【解析】
(1)由△ABC是等腰直角三角形,得到AC=BC,∠FCB=∠ECA=90°,由于AC⊥BE,BD⊥AE,根据垂直的定义得到∠CBF+∠CFB=90°,∠DAF+∠AFD=90°,由于∠CFB=∠AFD,于是得到∠CBF=∠CAE,证得△BCF≌△ACE,得出AE=BF,由于BE=BA,BD⊥AE,于是得到AD=ED,即AE=2AD,即可得到结论;
(2)由(1)知△BCF≌△ACE,推出CF=CE=,在Rt△CEF中,EF==2,由于BD⊥AE,AD=ED,求得AF=FE=2,于是结论即可.
【详解】
(1)证明:∵△ABC是等腰直角三角形,
∴AC=BC,∴∠FCB=∠ECA=90°,
∵AC⊥BE,BD⊥AE,
∴∠CBF+∠CFB=90°,∠DAF+∠AFD=90°,
∵∠CFB=∠AFD,
∴∠CBF=∠CAE,
在△BCF与△ACE中,,
∴△BCF≌△ACE,
∴AE=BF,
∵BE=BA,BD⊥AE,
∴AD=ED,即AE=2AD,
∴BF=2AD;
(2)由(1)知△BCF≌△ACE,
∴CF=CE=,
∴在Rt△CEF中,EF==2,
∵BD⊥AE,AD=ED,
∴AF=FE=2,
∴AC=AF+CF=2+.
【点评】
本题考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,熟练掌握全等三角形的判定和性质定理是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.
【解析】
从n边形的一个顶点可引的对角线条数应为:n-3,因为与它相邻的两个顶点和它本身的一个顶点均不能和其连接构成对角线。再用外角度数除几个角即可解答
【详解】
∵经过多边形的一个顶点有5条对角线,
∴这个多边形有5+3=8条边,
∴此正多边形的每个外角度数为360°÷8=1°,
故答案为:1.
此题考查正多边形的性质和外角,解题关键在于求出是几边形
20、1
【解析】
根据根与系数的关系求出,代入即可求解.
【详解】
∵是方程的两根
∴=-=4,==1
∴===4+1=1,
故答案为:1.
此题主要考查根与系数的关系,解题的关键是熟知=-,=的运用.
21、(31,32)
【解析】
分析:
由题意结合图形可知,从左至右的第1个正方形的边长是1,第2个正方形的边长是2,第3个正方形的边长是4,……,第n个正方形的边长是,由此可得点An的纵坐标是,根据点An在直线y=x+1上可得点An的横坐标为,由此即可求得A6的坐标了.
详解:
由题意结合图形可知:从左至右的第1个正方形的边长是1,第2个正方形的边长是2,第3个正方形的边长是4,……,第n个正方形的边长是,
∵点An的纵坐标是第n个正方形的边长,
∴点An的纵坐标为,
又∵点An在直线y=x+1上,
∴点An的横坐标为,
∴点A6的横坐标为:,点A6的纵坐标为:,
即点A6的坐标为(31,32).
故答案为:(31,32).
点睛:读懂题意,“弄清第n个正方形的边长是,点An的纵坐标与第n个正方形边长间的关系”是解答本题的关键.
22、5
【解析】
根据正方形的四条边都相等可得AB=AD,每一个角都是直角可得∠BAE=∠D=90°;然后利用“边角边”证明△ABE≌△DAF得∠ABE=∠DAF,进一步得∠AGE=∠BGF=90°,从而知GH=BF,利用勾股定理求出BF的长即可得出答案.
【详解】
∵四边形ABCD为正方形,
∴∠BAE=∠D=90°,AB=AD,
在△ABE和△DAF中,∵AB=AD,∠BAE=∠D,AE=DF,
∴△ABE≌△DAF(SAS),
∴∠ABE=∠DAF,
∵∠ABE+∠BEA=90°,
∴∠DAF+∠BEA=90°,
∴∠AGE=∠BGF=90°,
∵点H为BF的中点,
∴GH=BF,
∵BC=8,CF=CD-DF=8-2=6,
∴BF==10,
∴GH=BF=5.
本题考查了正方形的性质,全等三角形的判定与性质,直角三角形两锐角互余等知识,掌握三角形全等的判定方法与正方形的性质是解题的关键.
23、x⩽2且x≠−1.
【解析】
根据被开方数大于等于0,分母不等于0列式计算即可得解.
【详解】
由题意得,2−x⩾0且x+1≠0,
解得x⩽2且x≠−1.
故答案为:x⩽2且x≠−1.
此题考查函数自变量的取值范围,解题关键在于掌握各性质定义.
二、解答题(本大题共3个小题,共30分)
24、(1);(2)
【解析】
(1)两边开方,即可得出两个一元一次方程,求出方程的解即可;
(2)先把方程左边利用十字相乘法分解因式,即可得出两个一元一次方程,求出方程的解即可.
【详解】
解:(1)两边开方得:x-3=±3,
∴x-3=3或x-3=-3,
∴x1=6,x2=0;
(2)2x2+x-1=0,
∴(2x-1)(x+1)=0,
∴2x-1=0或x+1=0,
∴,x2=.
本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.
25、(1)见解析;(2)见解析;(3)见解析
【解析】
(1)根据三角形的三条中线交于一点即可解决问题.
(2)延长AD,BC交于点K,连接AC交BD于点O,作直线OK交AB于点E,点E即为所求.
(3)连接EC交BD于K,连接AK,DE交于点O,作直线OB交AD于F,线段BF即为所求
【详解】
(1)图1中,中线CE即为所求.
(2)如图2中,AB的中点E即为所求
(3)图3中,AD边上中线BF即为所求.
本题考查作图-复杂作图,三角形的中线等知识,解题的关键是灵活运用所学知识解决问题.
26、(1)y=-4x-2;(2)2
【解析】
(1)利用正比例函数的定义设y-2=k(x+1),然后把已知的对应值代入求出k得到y与x之间的函数关系式;
(2)利用(1)中的函数解析式,计算自变量为-3时对应的函数值即可.
【详解】
解:(1)设y-2=k(x+1),
∵x=-2 y=1,
∴1-2=k•(-2+1),解得k=-4
∴y=-4x-2;
(2)由(1)知 y=-4x-2,
∴当x=-3时,y==2.
本题考查了用待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;再将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;然后解方程或方程组,求出待定系数的值,进而写出函数解析式.
题号
一
二
三
四
五
总分
得分
尺码数
人数
河北省石家庄市同文中学2025届九年级数学第一学期开学教学质量检测模拟试题【含答案】: 这是一份河北省石家庄市同文中学2025届九年级数学第一学期开学教学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河北省隆尧县北楼中学等2025届九年级数学第一学期开学教学质量检测模拟试题【含答案】: 这是一份河北省隆尧县北楼中学等2025届九年级数学第一学期开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届河北省魏县九年级数学第一学期开学质量检测试题【含答案】: 这是一份2025届河北省魏县九年级数学第一学期开学质量检测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。