2024年河北省唐山市古治区九年级数学第一学期开学复习检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列图形:平行四边形、矩形、菱形、等腰梯形、正方形中是轴对称图形的有( )
A.1个B.2个C.3个D.4个
2、(4分)小勇投标训练4次的成绩分别是(单位:环)9,9,x,1.已知这组数据的众数和平均数相等,则这组数据中x是( )
A.7 B.1 C.9 D.10
3、(4分)直线不经过【 】
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4、(4分)如图,点A在函数y=(x>0)的图象上,且OA=4,过点A作AB⊥x轴于点B,则△ABO的周长为( )
A.2B.2C.2+4D.2+4
5、(4分)如果直角三角形的边长为3,4,a,则a的值是( )
A.5B.6C.D.5或
6、(4分)下列计算错误的是( )
A.+=2B.C.D.
7、(4分)某学习小组9名学生参加“数学竞赛”,他们的得分情况如下表:
那么这9名学生所得分数的众数和中位数分别是( )
A.90,87.5B.90,85C.90,90D.85,85
8、(4分)甲,乙,丙,丁四位跨栏运动员在某天“110米跨栏”训练中,每人各跑5次,据统计,他们的平均成绩都是13.2秒,甲,乙,丙,丁成绩的方差分别是0.11,0.03,0.05,0.02,则当天这四位运动员“110米跨栏”训练成绩最稳定的是( )
A.甲B.乙C.丙D.丁
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一次函数图象过点日与直线平行,则一次函数解析式__________.
10、(4分)一组数据:3,5,9,12,6的极差是_________.
11、(4分)关于的方程是一元二次方程,那么的取值范围是_______.
12、(4分) 若关于x的一元一次不等式组无解,则a的取值范围是_____.
13、(4分)菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长是_______cm.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知,正方形ABCD中,,绕点A顺时针旋转,它的两边长分别交CB、DC或它们的延长线于点MN,于点H.
如图,当点A旋转到时,请你直接写出AH与AB的数量关系;
如图,当绕点A旋转到时,中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明.
15、(8分)图①,图②都是由一个正方形和一个等腰直角三角形组成的图形.
(1)用实线把图①分割成六个全等图形;
(2)用实线把图②分割成四个全等图形.
16、(8分)如图,在中,点、分别是、的中点,平分,交于点,交于点.
(1)求证:四边形是菱形;
(2)若,,求四边形的周长.
17、(10分)如图,在平面直角坐标系中,O为原点,点A(2,1),B(﹣2,4),直线AB与y轴交于点C.
(1)求点C的坐标;
(2)求证:△OAB是直角三角形.
18、(10分)正方形ABCD的边长为6,点E、F分别在AB、BC上,将AD、DC分别沿DE、DF折叠,点A、C恰好都落在P处,且.
求EF的长;
求的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)正方形A1B1C1O,正方形A2B2C2C1,正方形A3B3C3C2,按如图所示的方式放置在平面直角坐标系中,若点A1、A2、A3和C1、C2、C3…分别在直线y=x+1和x轴上,则点B2019的坐标是_____.
20、(4分)如图,在中,,,分别是,的中点,在的延长线上,,,,则四边形的周长是____________.
21、(4分)在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AB=5,则BC=_____.
22、(4分)如图,在平面直角坐标系xOy中,点A(0,2),B(4,0),点N为线段AB的中点,则点N的坐标为_____________.
23、(4分)分式,,的最简的分母是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在中,,是的中点,是的中点,过点作交的延长线于点,连接.
(1)写出四边形的形状,并证明:
(2)若四边形的面积为12,,求.
25、(10分)如图,在▱ABCD中,E、F分别为边AD、BC的中点,对角线AC分别交BE,DF于点G、H.求证:AG=CH.
26、(12分)如图,在四边形中,,,,是的中点.点以每秒个单位长度的速度从点出发,沿向点运动;点同时以每秒个单位长度的速度从点出发,沿向点运动.点停止运动时,点也随之停止运动.当运动时间为多少秒时,以点,,,为顶点的四边形是平行四边形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据轴对称图形的概念对各图形分析判断后即可得解.
【详解】
平行四边形不是轴对称图形,
矩形是轴对称图形,
菱形是轴对称图形,
等腰梯形是轴对称图形,
正方形是轴对称图形,
所以,轴对称图形的是:矩形、菱形、等腰梯形、正方形共4个.
故选D.
此题考查轴对称图形,解题关键在于掌握其定义.
2、C
【解析】【分析】根据题意可知,x是9,不可能是1.
【详解】因为这组数据的众数和平均数相等,则这组数据中x是9.
故选:C
【点睛】本题考核知识点:众数和平均数.解题关键点:理解众数和平均数的定义.
3、B。
【解析】一次函数图象与系数的关系。
【分析】∵,∴
∴的图象经过第一、三、四象限,不经过第二象限。故选B。
4、D
【解析】
由点A在反比例函数的图象上,设出点A的坐标,结合勾股定理可以表现出OA2=AB2+OB2,再根据反比例函数图象上点的坐标特征可得出AB•OB的值,根据配方法求出(AB+OB)2,由此即可得出AB+OB的值,结合三角形的周长公式即可得出结论.
【详解】
解:∵点A在函数y=(x>0)的图象上,
∴设点A的坐标为(n,)(n>0).
在Rt△ABO中,∠ABO=90°,OA=1,
∴OA2=AB2+OB2,
又∵AB•OB=•n=1,
∴(AB+OB)2=AB2+OB2+2AB•OB=12+2×1=21,
∴AB+OB=2,或AB+OB=-2(舍去).
∴C△ABO=AB+OB+OA=2+1.
故答案为2+1.
故选D.
本题考查了反比例函数图象上点的坐标特征、完全平方公式以及三角形的周长,解题的关键是求出AB+OB的值.本题属于基础题,难度不大,解决该题型题目时,巧妙的利用完全平方公式直接求出两直角边之和是关键.
5、D
【解析】
分两种情况分析:a是斜边或直角边,根据勾股定理可得.
【详解】
解:当a是斜边时,a=;
当a是直角边时,a=
所以,a的值是5或
故选:D.
本题考核知识点:勾股定理,解题关键点:分两种情况分析.
6、B
【解析】
根据根式的运算性质即可解题.
【详解】
解:A,C,D计算都是正确的,
其中B项,只有同类根式才可以作加减法,所以B错误,
故选B.
本题考查了根式的运算,属于简单题,熟悉根式的运算性质是解题关键.
7、C
【解析】
根据中位数(按由小到大顺序排列,最中间位置的数)、众数(出现次数最多的数)的概念确定即可.
【详解】
解:90分出现了4次,出现次数最多,故众数为90;将9位同学的分数按从小到大排序为80,85,85,85,90,90,90,90,95,处于最中间的是90,故中位数是90.
故答案为:C
本题考查了中位数和众数,准确理解两者的定义是解题的关键.
8、D
【解析】
根据方差的定义,方差越小数据越稳定.
【详解】
∵0.02<0.03<0.05<0.11,
∴丁的成绩的方差最小,
∴当天这四位运动员“110米跨栏”的训练成绩最稳定的是丁。
故选:D.
此题考查方差,解题关键在于掌握其定义
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
设一次函数解析式为y=kx+b,先把(0,-1)代入得b=-1,再利用两直线平行的问题得到k=-3,即可得到一次函数解析式.
【详解】
解:设一次函数解析式为y=kx+b,
把(0,-1)代入得b=-1,
∵直线y=kx+b与直线y=1-3x平行,
∴k=-3,
∴一次函数解析式为y=-3x-1.
故答案为:y=-3x-1.
本题考查两直线相交或平行的问题:若两条直线是平行的关系,那么它们的自变量系数相同,即k值相同.
10、1
【解析】
根据极差的定义求解.
【详解】
解:数据:3,5,1,12,6,所以极差=12-3=1.
故答案为:1.
本题考查了极差的定义,它反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.
11、
【解析】
根据一元二次方程的概念及一般形式:即可求出答案.
【详解】
解:∵关于的方程是一元二次方程,
∴二次项系数,
解得;
故答案为.
本题考查一元二次方程的概念,比较简单,做题时熟记二次项系数不能等于0即可.
12、
【解析】
解不等式组可得 ,因不等式组无解,所以a≥1.
13、20cm
【解析】
根据菱形的对角线互相垂直平分可得AC⊥BD,OA=AC,OB=BD,再利用勾股定理列式求出AB,然后根据菱形的四条边都相等列式计算即可得解.
【详解】
解:如图,∵四边形ABCD是菱形,
∴AC⊥BD,OA=AC=×6=3cm,
OB=BD=×8=4cm,
根据勾股定理得,AB=,
所以,这个菱形的周长=4×5=20cm.
故答案为:20
本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分,需熟记.
三、解答题(本大题共5个小题,共48分)
14、;(2)数量关系还成立.证明见解析.
【解析】
(1)由题意可证△ABM≌△ADN,可得AM=AN,∠BAM=∠DAN=22.5°,再证△ABM≌△AMH可得结论;
(2)延长CB至E,使BE=DN,可证△ABE≌△ADN,可得AN=AE,∠BAE=∠DAN,可得∠EAM=∠MAN=45°且AM=AM,AE=AN,可证△AME≌△AMN,则结论可证.
【详解】
,理由如下:
是正方形
,且,
≌,
,,
,
,
,
,,
,
且,,
≌,
;
数量关系还成立.
如图,延长CB至E,使,
,,,
≌,
,,
,
即,
且,,
≌,
,≌,
,
.
本题考查了旋转的性质,正方形的性质,全等三角形的判定和性质,正确添加辅助线构建全等三角形是解题的关键.
15、 (1)见解析;(2)见解析.
【解析】
设正方形的面积为2,则等腰直角三角形的面积为1,
(1)根据题意,分成的每一个图形的面积为 ,分成六等腰个直角三角形即可;
(2)根据题意,分成的每一个图形的面积为 ,分成四个直角梯形即可.
【详解】
解:如图所示:
本题考查复杂作图,根据面积确定出分成的每一个图形的面积是解题的关键,难度中等,但不容易考虑.
16、(1)见解析;(2)8.
【解析】
(1)由三角形中位线定理可得BC=2DE,DE∥BC,且FG∥AB,可证四边形BDFG是平行四边形,由角平分线的性质和平行线的性质可得DF=DB,即可得四边形BDFG是菱形;
(2)由菱形的性质可得DF=BG=GF=BD,由BC=2DE,可求BG的长,即可求四边形BDFG的周长.
【详解】
证明:(1)∵点D、E分别是AB、AC的中点,
∴BC=2DE,DE∥BC,且FG∥AB,
∴四边形BDFG是平行四边形,
∵BF平分∠ABC,
∴∠DBF=∠GBF,
∵DE∥BC,
∴∠GBF=∠DFB,
∴∠DFB=∠DBF,
∴DF=DB,
∴四边形BDFG是菱形;
(2)∵四边形BDFG是菱形;
∴DF=BG=GF=BD
∵BC=2DE
∴BG+4=2(BG+1)
∴BG=2,
∴四边形BDFG的周长=4×2=8
本题考查了菱形的性质和判定,三角形中位线定理,熟练运用菱形的性质是本题的关键.
17、(1)(0,);(2)见解析
【解析】
(1)利用待定系数法求出直线AB的解析式,求出点C的坐标;
(2)根据勾股定理分别求出OA2、OB2、AB2,根据勾股定理的逆定理判断即可.
【详解】
(1)解:设直线AB的解析式为:y=kx+b,
点A(2,1),B(﹣2,4),
则,
解得,,
∴设直线AB的解析式为:y=﹣x+,
∴点C的坐标为(0,);
(2)证明:∵点A(2,1),B(﹣2,4),
∴OA2=22+12=5,OB2=22+42=20,AB2=(4-1)2+(-2-2)2=25,
则OA2+OB2=AB2,
∴△OAB是直角三角形.
本题考查的是待定系数法求一次函数解析式、勾股定理的逆定理,掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解题的关键.
18、 (1)5;(2)6.
【解析】
(1) 设,则,,由勾股定理得得,,求出,可得(2)先求BE,BF,再根据,可得结果.
【详解】
解:设,则,,
由勾股定理得得,,解得,,即,
;
,,
.
,,
,
.
本题考核知识点:正方形,勾股定理. 解题关键点:运用折叠的性质得到边相等.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、.
【解析】
先求得A1(0,1),OA1=1,然后根据正方形的性质求出C1(1,0),B1(1,1),同样的方法求出C2(3,0),B2(3,2),C3(7,0),B3(7,4),……,从而有Cn(2n-1,0),Bm(2n-1,2n-1),由此即可求得答案.
【详解】
当x=0时,y=x+1=1,
∴A1(0,1),OA1=1,
∵正方形A1B1C1O,
∴A1B1=B1C1=OC1=OA1=1,
∴C1(1,0),B1(1,1),
当x=1时,y=x+1=2,
∴A2(1,2),C1A2=2,
∵正方形A2B2C2C1,
∴A2B2=B2C2=C1C2=C1A1=2,
∴C2(3,0),B2(3,2),
当x=3时,y=x+1=4,
∴A3(3,4),C2A3=4,
∵正方形A3B3C3C2,
∴A3B3=B3C3=C2C3=C2A3=4,
∴C3(7,0),B3(7,4),
……
∴Cn(2n-1,0),Bm(2n-1,2n-1),
∴B2019(22019-1,22018),
故答案为(22019-1,22018).
本题考查一次函数图象上点的坐标特征、正方形的性质,解题的关键是明确题意,找出各个点之间的关系,利用数形结合的思想解答问题.
20、1
【解析】
根据勾股定理先求出BC的长,再根据三角形中位线定理和直角三角形的性质求出DE和AE的长,进而由已知可判定四边形AEDF是平行四边形,从而求得其周长.
【详解】
解:在Rt△ABC中,
∵AC=6,AB=8,
∴BC=10,
∵E是BC的中点,
∴AE=BE=5,
∴∠BAE=∠B,
∵∠FDA=∠B,
∴∠FDA=∠BAE,
∴DF∥AE,
∵D、E分别是AB、BC的中点,
∴DE∥AC,DE=AC=3,
∴四边形AEDF是平行四边形
∴四边形AEDF的周长=2×(3+5)=1.
故答案为:1.
本题考查三角形中位线定理的运用,熟悉直角三角形的性质、等腰三角形的判定以及平行四边形的判定.熟练运用三角形的中位线定理和直角三角形的勾股定理是解题的关键.
21、5;
【解析】
根据矩形性质得出AC=2AO,BD=2BO,AC=BD,推出AO=OB,得出等边三角形AOB,利用勾股定理即可得出答案.
【详解】
∵四边形ABCD是矩形,
∴AC=BD,AC=2AO,BD=2BO,∠ABC=90°,
∴AO=OB,
∵∠AOB=60°,
∴△AOB是等边三角形,
∴AO=AB=5,
∴AC=2 AO=10,
在Rt△ABC中,由勾股定理得,
BC=.
故答案为:5.
本题考查了矩形的性质及勾股定理.根据矩形的性质及∠AOB=60°得出△AOB是等边三角形是解题的关键.
22、 (2,1)
【解析】
【分析】直接运用线段中点坐标的求法,易求N的坐标.
【详解】点N的坐标是:(),即(2,1).
故答案为:(2,1)
【点睛】本题考核知识点:平面直角坐标系中求线段的中点. 解题关键点:理解线段中点的坐标求法.
23、6x
【解析】
先确定各分母中,系数的最小公倍数,再找出各因式的最高次幂,即可得答案.
【详解】
∵3个分式分母的系数分别为1,2,3
∴此系数最小公倍数是6.
∵x的最高次幂均为1,
∴三个分式的最简公分母为6x.
故答案为:6x
本题考查分式最简公分母的定义:最简公分母就是由每个分母中系数的最小公倍数与各因式的最高次幂的积.
二、解答题(本大题共3个小题,共30分)
24、(1)详见解析;(2)
【解析】
(1)由“AAS”可证△AEF≌△DEC,可得AF=CD,由直角三角形的性质可得AD=BD=CD,由菱形的判定是可证ADBF是菱形.
(2)由题意可得S△ABC=S四边形ADBF=12,可得AC的长,由勾股定理可求BC的长.
【详解】
解:解:(1)四边形ADBF是菱形,
理由如下:∵E是AD的中点,
∴AE=DE,
∵AF∥BC
∴∠AFE=∠DCE,且∠AEF=∠CED,AE=DE
∴△AEF≌△DEC(AAS)
∴AF=CD,
∵点D是BC的中点
∴BD=DC
∴AF=BD,且AF∥CD
∴四边形ADBF是平行四边形,
∵∠BAC=90°,D是BC的中点,
∴AD=BD,
∴平行四边形ADBF是菱形
(2)∵四边形ADBF的面积为12,
∴S△ABD=6
∵D是BC的中点
∴S△ABC=12=×AB×AC
∴12=×4×AC
∴AC=6,
∴BC=.
本题考查菱形的性质及判定,利用全等三角形的性质证得AF=CD是解题的关键,注意菱形面积公式的应用.
25、证明见解析.
【解析】
根据平行四边形的性质得到AD∥BC,得出∠ADF=∠CFH,∠EAG=∠FCH,证出四边形BFDE是平行四边形,得出BE∥DF,证出∠AEG=∠CFH,由ASA证明△AEG≌△CFH,得出对应边相等即可.
【详解】
解:∵四边形ABCD是平行四边形,
∴AD∥BC,∴∠ADF=∠CFH,∠EAG=∠FCH,
∵E、F分别为AD、BC边的中点,
∴AE=DE=AD,CF=BF=BC,
∴DE∥BF,DE=BF,
∴四边形BFDE是平行四边形,
∴BE∥DF,∴∠AEG=∠ADF,
∴∠AEG=∠CFH,
在△AEG和△CFH中,
∵∠EAG=∠FCH,AE=CF,∠AEG=∠CFH,
∴△AEG≌△CFH(ASA),
∴AG=CH.
26、当运动时间为秒或秒时,以点,,,为顶点的四边形是平行四边形.
【解析】
分别从当Q运动到E和B之间、当Q运动到E和C之间去分析求解即可求得答案.
【详解】
解:是的中点,
,
①当运动到和之间,设运动时间为,则得:
,
解得:;
②当运动到和之间,设运动时间为,则得:
,
解得:,
当运动时间为秒或秒时,以点,,,为顶点的四边形是平行四边形.
此题考查了梯形的性质以及平行四边形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想、分类讨论思想与方程思想的应用.
题号
一
二
三
四
五
总分
得分
人数(人)
1
3
4
1
分数(分)
80
85
90
95
河北省唐山市古治区2023-2024学年九年级数学第一学期期末达标检测试题含答案: 这是一份河北省唐山市古治区2023-2024学年九年级数学第一学期期末达标检测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列说法正确的是等内容,欢迎下载使用。
河北省唐山市古治区2023-2024学年八上数学期末质量跟踪监视试题含答案: 这是一份河北省唐山市古治区2023-2024学年八上数学期末质量跟踪监视试题含答案,共7页。
2022-2023学年河北省唐山市古治区七年级数学第二学期期末学业水平测试模拟试题含答案: 这是一份2022-2023学年河北省唐山市古治区七年级数学第二学期期末学业水平测试模拟试题含答案,共7页。试卷主要包含了下列函数关系式等内容,欢迎下载使用。