河北省石家庄市同文中学2025届九年级数学第一学期开学教学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在中,点D、E、F分别在边、、上,且,.下列四种说法: ①四边形是平行四边形;②如果,那么四边形是矩形;③如果平分,那么四边形是菱形;④如果且,那么四边形是菱形. 其中,正确的有( ) 个
A.1B.2C.3D.4
2、(4分)下列四组线段中,能组成直角三角形的是
A.,,B.,,
C.,,D.,,
3、(4分)下列命题正确的是( )
A.在同一平面内,可以把半径相等的两个圆中的一个看成是由另一个平移得到的.
B.两个全等的图形之间必有平移关系.
C.三角形经过旋转,对应线段平行且相等.
D.将一个封闭图形旋转,旋转中心只能在图形内部.
4、(4分)下列事件中是必然事件的是( )
A.投掷一枚质地均匀的硬币100次,正面朝上的次数为50次
B.一组对边平行,另一组对边相等的四边形是等腰梯形
C.如果,那么
D.13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月
5、(4分)如图,已知菱形的两条对角线分别为6cm和8cm,则这个菱形的高DE为( )
A.2.4cmB.4.8cmC.5cmD.9.6cm
6、(4分)小强骑自行车去郊游,9时出发,15时返回.如图表示他离家的路程y(千米)与相应的时刻x(时)之间的函数关系的图像.根据图像可知小强14时离家的路程是( )
A.13千米B.14千米C.15千米D.16千米
7、(4分)为了了解班级同学的家庭用水情况,小明在全班50名同学中,随机调查了10名同学家庭中一年的月平均用水量(单位:吨),绘制了条形统计图如图所示.这10名同学家庭中一年的月平均用水量的中位数是( )
A.6B.6.5C.7.5D.8
8、(4分)周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是( )
A.小丽从家到达公园共用时间20分钟B.公园离小丽家的距离为2000米
C.小丽在便利店时间为15分钟D.便利店离小丽家的距离为1000米
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,已知▱OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为__.
10、(4分)已知一组数据为1,2,3,4,5,则这组数据的方差为_____.
11、(4分)已知直线与平行且经过点,则的表达式是__________.
12、(4分)已知一次函数()经过点,则不等式的解集为__________.
13、(4分)如图,矩形全等于矩形,点在上.连接,点为的中点.若,,则的长为__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售一部,所有出售的汽车的进价均降低0.1万元/部.月底厂家根据销售量一次性返利给销售公司,销售量在10部以内,含10部,每部返利0.5万元,销售量在10部以上,每部返利1万元.
① 若该公司当月卖出3部汽车,则每部汽车的进价为万元;
② 如果汽车的销售价位28万元/部,该公司计划当月盈利12万元,那么要卖出多少部汽车?(盈利=销售利润+返利)
15、(8分)如图,直线是一次函数的图象.
(1)求出这个一次函数的解析式;
(2)将该函数的图象向下平移3个单位,求出平移后一次函数的解析式,并写出平移后的图像与轴的交点坐标
16、(8分)如图,在平面直角坐标系 xOy中,直线ykxb与 x轴相交于点A,与反比例函数在第一象限内的图像相交于点 A(1,8)、B(m,2).
(1)求该反比例函数和直线y kxb的表达式;
(2)求证:ΔOBC为直角三角形;
(3)设∠ACO=α,点Q为反比例函数在第一象限内的图像上一动点,且满足90°-α<∠QOC<α,求点Q的横坐标q的取值范围.
17、(10分)八年级班一次数学测验,老师进行统计分析时,各分数段的人数如图所示(分数为整数,满分分).请观察图形,回答下列问题:
(1)该班有____名学生:
(2)请估算这次测验的平均成绩.
18、(10分)某学生本学期6次数学考试成绩如下表所示:
(1)6次考试成绩的中位数为 ,众数为 .
(2)求该生本学期四次月考的平均成绩.
(3)如果本学期的总评成绩按照月考平均成绩占20﹪、期中成绩占30﹪、期末成绩占50﹪计算,那么该生本学期的数学总评成绩是多少?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)使有意义的x取值范围是______.
20、(4分)在实数范围内定义一种运算“*”,其规则为a*b=a2﹣b2,根据这个规则,方程(x+2)*5=0的解为_____.
21、(4分)如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中有____对全等三角形.
22、(4分)为了考察甲、乙两块地小麦的长势,分别从中随机抽出10株苗,测得苗高如图所示.若和 分别表示甲、乙两块地苗高数据的方差,则________.(填“>”、“<”或“=”).
23、(4分)为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下(单位:℃):-6,-3,x,2,-1,3,若这组数据的中位数是-1,在下列结论中:①方差是8;②极差是9;③众数是-1;④平均数是-1,其中正确的序号是________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,中,是的中点,将沿折叠后得到,且 点在□内部.将延长交于点.
(1)猜想并填空:________(填“”、“”、“”);
(2)请证明你的猜想;
(3)如图,当,设,,,证明:.
25、(10分)如图,在ABCD中,AD∥BC,AC=BC=4,∠D=90°,M,N分别是AB、DC的中点,过B作BE⊥AC交射线AD于点E,BE与AC交于点F.
(1)当∠ACB=30°时,求MN的长:
(2)设线段CD=x,四边形ABCD的面积为y,求y与x的函数关系式及其定义域;
(3)联结CE,当CE=AB时,求四边形ABCE的面积.
26、(12分)(1)解分式方程:
(2)解不等式组,并在数轴上表示其解集.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
先由两组对边分别平行的四边形为平行四边形,根据DE∥CA,DF∥BA,得出AEDF为平行四边形,得出①正确;当∠BAC=90°,根据推出的平行四边形AEDF,利用有一个角为直角的平行四边形为矩形可得出②正确;若AD平分∠BAC,得到一对角相等,再根据两直线平行内错角相等又得到一对角相等,等量代换可得∠EAD=∠EDA,利用等角对等边可得一组邻边相等,根据邻边相等的平行四边形为菱形可得出③正确;由AB=AC,AD⊥BC,根据等腰三角形的三线合一可得AD平分∠BAC,同理可得四边形AEDF是菱形,④正确,进而得到正确说法的个数.
【详解】
解:∵DE∥CA,DF∥BA,
∴四边形AEDF是平行四边形,选项①正确;
若∠BAC=90°,
∴平行四边形AEDF为矩形,选项②正确;
若AD平分∠BAC,
∴∠EAD=∠FAD,
又DE∥CA,∴∠EDA=∠FAD,
∴∠EAD=∠EDA,
∴AE=DE,
∴平行四边形AEDF为菱形,选项③正确;
若AB=AC,AD⊥BC,
∴AD平分∠BAC,
同理可得平行四边形AEDF为菱形,选项④正确,
则其中正确的个数有4个.
故选D.
此题考查了平行四边形的定义,菱形、矩形的判定,涉及的知识有:平行线的性质,角平分线的定义,以及等腰三角形的判定与性质,熟练掌握平行四边形、矩形及菱形的判定与性质是解本题的关键.
2、D
【解析】
由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.
【详解】
A.1²+2²≠3²,故不是直角三角形,故本选项错误;
B.2²+3²≠4²故不是直角三角形,故本选项错误;
C.2²+4²≠5²,故不是直角三角形,故本选项错误;
D.3²+4²=5 ²,故是直角三角形,故本选项正确.
故选D.
本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
3、A
【解析】
根据平移的性质:平移后图形的大小、方向、形状均不发生改变结合选项即可得出答案.
【详解】
解:A、经过旋转后的图形两个图形的大小和形状也不变,半径相等的两个圆是等圆,圆还具有旋转不变性,故本选项正确;
B、两个全等的图形位置关系不明确,不能准确判定是否具有平移关系,错误;
C、三角形经过旋转,对应线段相等但不一定平行,所以本选项错误;
D、旋转中心可能在图形内部,也可能在图形边上或者图形外面,所以本选项错误.
故选:A.
本题考查平移、旋转的基本性质,注意掌握①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.
4、D
【解析】
根据事件发生的可能性大小判断相应事件的类型即可.
【详解】
解:A、投掷一枚质地均匀的硬币100次,正面朝上的次数为50次是随机事件;
B、一组对边平行,另一组对边相等的四边形是等腰梯形是随机事件;
C、如果a2=b2,那么a=b是随机事件;
D、13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月是必然事件;
故选:D.
本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
5、B
【解析】
解:如图所示:
∵四边形ABCD是菱形,
∴OA=AC=4,OB=BD=3,AC⊥BD,
∴AB=,
∵菱形ABCD的面积=AB•DE=AC•BD=×8×6=24,
∴DE==4.8;
故选B.
6、C
【解析】
由纵坐标看出,返回时离家的距离是30千米,
由横坐标看出,返回时所用的时间是15−13=2小时,
由路程与时间的关系,得
返回时的速度是30÷2=15千米,
由时间、速度的关系得15×1=15千米,
故选:C.
7、B
【解析】
根据条形统计图,即可知道每一名同学家庭中一年的月均用水量,再根据中位数的概念进行求解
【详解】
解::共有10个数据,
.中位数是第5、6个数据的平均数由条形图知第5、6个数据为6.5,6.5,
所以中位数为,
故选:B.
本题考查的是条形统计图的运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键,注意掌握中位数的计算方法.
8、C
【解析】
解:A.小丽从家到达公园共用时间20分钟,正确;
B.公园离小丽家的距离为2000米,正确;
C.小丽在便利店时间为15﹣10=5分钟,错误;
D.便利店离小丽家的距离为1000米,正确.
故选C.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1.
【解析】
试题分析:当B在x轴上时,对角线OB长的最小,如图所示:直线x=1与x轴交于点D,直线x=4与x轴交于点E,根据题意得:∠ADO=∠CEB=90°,OD=1,OE=4,∵四边形ABCD是平行四边形,∴OA∥BC,OA=BC,∴∠AOD=∠CBE,在△AOD和△CBE中,∵∠AOD=∠CBE,∠ADO=∠CEB,OA=BC,∴△AOD≌△CBE(AAS),∴OD=BE=1,∴OB=OE+BE=1;故答案为1.
考点:平行四边形的性质;坐标与图形性质.
10、1.
【解析】
试题分析:先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案.
由平均数的公式得:(1+1+3+4+5)÷5=3,
∴方差=[(1﹣3)1+(1﹣3)1+(3﹣3)1+(4﹣3)1+(5﹣3)1]÷5=1.
考点:方差.
11、
【解析】
先根据两直线平行的问题得到k=2,然后把(1,3)代入y=2x+b中求出b即可.
【详解】
∵直线y=kx+b与y=2x+1平行,
∴k=2,
把(1,3)代入y=2x+b得2+b=3,解得b=1,
∴y=kx+b的表达式是y=2x+1.
故答案为:y=2x+1.
此题考查一次函数中的直线位置关系,解题关键在于求k的值.
12、
【解析】
先把(-1,0)代入y=kx+b得b=k,则k(x-3)+b<0化为k(x-3)+k<0,然后解关于x的不等式即可.
【详解】
解:把(-1,0)代入y=kx+b得-k+b=0,解b=k,
则k(x-3)+b<0化为k(x-3)+k<0,
而k<0,
所以x-3+1>0,
解得x>1.
故答案为x>1.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
13、
【解析】
延长CH交FG的延长线于点N,由条件可以得出△CDH≌△NFH,就可以得出CH=NH,CD=NF,求出NG的长,根据勾股定理求出CN的长,从而可求出CH的长.
【详解】
解:延长CH交FG的延长线于点N,
∵FG∥CD,
∴∠CDH=∠NFH.
∵点为的中点,
∴DH=FH.
在△CDH和△NFH中,
∵∠CDH=∠NFH,
DH=FH,
∠CHD=∠NHF,
∴△CDH≌△NFH,
∴CH=NH,CD=NF=10,
∴NG=4,
∴CN=,
∴CH=2.
故答案为:2.
本题考查了矩形的性质的运用,菱形的性质的运用,全等三角形的判定及性质的运用,等腰直角三角形的性质的运用,特殊角的三角函数值的运用.解答时证明三角形全等是解答本题的关键.
三、解答题(本大题共5个小题,共48分)
14、解:(1)22.1.
(2)设需要售出x部汽车,
由题意可知,每部汽车的销售利润为:21-[27-0.1(x-1)]=(0.1x+0.9)(万元),
当0≤x≤10,根据题意,得x·(0.1x+0.9)+0.3x=12,整理,得x2+14x-120=0,
解这个方程,得x1=-20(不合题意,舍去),x2=2.
当x>10时,根据题意,得x·(0.1x+0.9)+x=12,整理,得x2+19x-120=0,
解这个方程,得x1=-24(不合题意,舍去),x2=3.
∵3<10,∴x2=3舍去.
答:要卖出2部汽车.
【解析】
一元二次方程的应用.
(1)根据若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,得出该公司当月售出3部汽车时,则每部汽车的进价为:27-0.1×2=22.1.,
(2)利用设需要售出x部汽车,由题意可知,每部汽车的销售利润,根据当0≤x≤10,以及当x>10时,分别讨论得出即可.
15、(1);(2),
【解析】
(1)利用待定系数法求一次函数解析式即可;
(2)根据一次函数的平移规律:左加右减,上加下减,即可求出平移后的解析式,然后将y=0代入求出x的值,即可求出结论.
【详解】
解:(1)把点,代入中,得:
解得
∴一次函数的解析式为
(2)将该函数的图象向下平移3个单位后得.
当时,解得:
∴平移后函数图象与轴的交点坐标为
此题考查的是求一次函数的解析式和一次函数图象的平移,掌握用待定系数法求一次函数的解析和一次函数的平移规律:左加右减,上加下减是解决此题的关键.
16、(1);;(2)证明见解析;(3).
【解析】
(1)首先利用待定系数法求得反比例函数的解析式,然后求得B的坐标,则利用待定系数法即可求得直线的解析式;
(2)过点B作BD⊥OC于点D,在直角△OBD和直角△OBC中,利用勾股定理求得和,然后利用勾股定理的逆定理即可证明;
(3)分成Q在B的左侧和右侧两种情况讨论,当在右侧时一定不成立,当在左侧时,判断是否存在点Q时∠QCO=90°-α即可.
【详解】
(1)设反比例函数的解析式是y=kx,
把(1,8)代入得k=8,
则反比例函数表达式为,
把(m,2)代入得,
则B的坐标是(4,2).
根据题意得:,
解得:,
,则直线表达式y=−2x+10;
(2)过点B作BD⊥OC于点D,(图1)则D的坐标是(4,0).
在y=−2x+10中,令y=0,解得x=5,则OC=5.
∵在直角△OBD中,BD=2,DC=OC−OD=5−4=1,
则,
同理,直角△BCD中, ,
∴,
∴△OBC是直角三角形;
(3)当Q在B的右侧时一定不成立,
在y=−2x+10中,令x=0,则y=10,
则当Q在的左边时,(图2)tan∠ACO=tanα=2,
则tan(90°−α)= .
当∠QCO=90°−α时,Q的横坐标是p,则纵坐标是,
tan∠QCO=tan(90°−α)= :(5−p)=
即,
△=25−4×16=−39<0,则Q不存在,
故当Q在AB之间时,满足条件,
因而2
此题考查反比例函数以及三角函数,解题关键在于结合反比例函数的图象解决问题.
17、(1)60 (2)61分
【解析】
(1)把各分数段的人数相加即可.
(2)用总分数除以总人数即可求出平均分.
【详解】
(1)(名)
故该班有60名学生.
(2)(分)
故这次测验的平均成绩为61分.
本题考查了条形统计图的问题,掌握条形统计图的性质、平均数的算法是解题的关键.
18、(1)109 , 1.(2)109;(3)110.2
【解析】
(1)把6个数从小到大排列,按照中位数、众数的概念即可得出结论;
(2)把平时测试成绩相加,再求出其平均数即可;
(3)取4次月考成绩平均分的20%加上期中成绩的30﹪加上期末成绩的50﹪计算即可.
【详解】
解:(1)这6个数从小到大排列为:105,1,1,110,112,113,中位数是=109,众数是1.
故答案为:109,1;
(2)平时测试的数学平均成绩=(分);
(3)总评成绩=(分)
答:该生本学期的数学总评成绩为110.2分。
本题考查了中位数和众数的定义,熟练的掌握数据的分析和加权平均数的计算方法是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x≥1
【解析】
试题分析:二次根式有意义的条件:二次根号下的数为非负数,二次根式才有意义.
由题意得,.
考点:二次根式有意义的条件
点评:本题属于基础应用题,只需学生熟练掌握二次根式有意义的条件,即可完成.
20、3或-1
【解析】
据题意得,∵(x+2)*5=(x+2)2-52∴x2+4x-21=0,∴(x-3)(x+1)=0,∴x=3或x=-1.
21、1
【解析】
试题分析:OP平分∠MON,PE⊥OM于E,PF⊥ON于F,
∴PE=PF,∠1=∠2,
在△AOP与△BOP中,
,
∴△AOP≌△BOP,
∴AP=BP,
在△EOP与△FOP中,
,
∴△EOP≌△FOP,
在Rt△AEP与Rt△BFP中,
,
∴Rt△AEP≌Rt△BFP,
∴图中有1对全等三角形,
故答案为1.
考点:角平分线的性质,全等三角形的判定和性质.
22、<
【解析】
方差用来计算每一个变量(观察值)与总体均数之间的差异,所以从图像看苗高的波动幅度,可以大致估计甲、乙两块地苗高数据的方差.
【详解】
解:由图可知,甲、乙两块地的苗高皆在12cm上下波动,但乙的波动幅度比甲大,
∴ 则
故答案为:<
本题考查了方差,方差反映了数据的波动程度,方差越大,数据的波动越大,正确理解方差的含义是解题的关键.
23、②③④
【解析】
分析:分别计算该组数据的平均数,众数,方差后找到正确的答案即可.
详解:∵﹣6,﹣3,x,2,﹣1,3的中位数是-1,∴分三种情况讨论:
①若x≤-3,则中位数是(-1-3)÷2=-2,矛盾;
②若x≥2,则中位数是(-1+2)÷2=0.5,矛盾;
③若-3<x≤-1或-1≤x<2,则中位数是(-1+x)÷2=-1,解得:x=﹣1;
平均数=(﹣6﹣3﹣1﹣1+2+3)÷6=﹣1.
∵数据﹣1出现两次,出现的次数最多,∴众数为﹣1;
方差=[(﹣6+1)2+(﹣3+1)2+(﹣1+1)2+(2+1)2+(﹣1+1)2+(3+1)2]=9,∴正确的序号是②③;
故答案为②③.
点睛:本题考查了方差、平均数、中位数及众数的知识,属于基础题,掌握各部分的定义及计算方法是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)=;(2)见解析;(3)见解析
【解析】
(1)根据折叠的性质、平行四边形的性质、以及等腰三角形的判定与性质可猜想为相等;
(2)先证明∠EDF=∠EGF,再证明EG=ED,则等边对等角得:∠EGD=∠EDG,相减可得结论;
(3)分别表示BF、CF、BC的长,证明ABCD是矩形得:∠C=90°,在Rt△BCF中,由勾股定理列式可得结论.
【详解】
解:(1)GF=DF,
故答案为:=;
(2)理由是:
连接DG,
由折叠得:AE=EG,∠A=∠BGE,
∵E在AD的中点,
∴AE=ED,
∴ED=EG,
∴∠EGD=∠EDG,
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠A+∠ADC=180°,
∵∠BGE+∠EGF=180°,
∴∠EDF=∠EGF,
∴∠EDF-∠EDG=∠EGF-∠EGD,
即∠GDF=∠DGF,
∴GF=DF;
(3)证明:如图2,由(2)得:DF=GF=b,
由图可得:BF=BG+GF=a+b,
由折叠可得:AB=BG=a,AE=EG=c,
在ABCD中,
BC=AD=2AE=2c,CD=AB=a,
∴CF=CD-DF=a-b,
∵∠A=90°,
∴ABCD是矩形,
∴∠C=90°,
在Rt△BCF中,由勾股定理得,
BC2+CF2=BF2,
∴(2c)2+(a-b)2=(a+b)2,
整理得:c2=ab.
本题考查了平行四边形的性质、矩形的性质和判定、勾股定理、折叠的性质、等腰三角形的性质与判定,难度适中,熟练掌握折叠前后的边和角相等是关键.
25、 (1)MN=2+;(2)y=•x•2x(0<x<4);(3)1或1.
【解析】
(1)解直角三角形求出AD,利用梯形中位线定理即可解决问题;
(2)求出AD,利用梯形的面积公式计算即可;
(3)作AG⊥BC于G,EH⊥BC于H.想办法证明△ABC≌△ECB,推出AC=BE=4,因为AC⊥BE,可得S四边形ABCE=•AC•BE,由此计算即可;
【详解】
(1)∵AD∥BC,
∴∠DAC=∠ACB=30°,
在Rt△ACD中,∵AC=4,∠D=90°,∠ACD=30°,
∴CD=AC=2,AD=CD=2,
∵AM=BM,DN=CN,
∴MN是梯形ABCD的中位线,
∴MN=(AD+BC)=2+.
(2)在Rt△ACD中,∵AC=4,∠D=90°,CD=x,
∴AD==,
∴y=•(AD+BC)•CD=(+4)x=•x•+2x(0<x<4).
(3)①当点E在线段AD上时,作AG⊥BC于G,EH⊥BC于H.
∵AD∥BC,AG⊥BC于G,EH⊥BC于H.
∴AG=EH,∠AGB=∠EHC=90°,
∵AB=EC,
∴Rt△ABG≌Rt△ECH,
∴∠ABC=∠ECB,
∵AB=EC,BC=CB,
∴△ABC≌△ECB,
∴AC=BE=4,
∵AC⊥BE,
∴S四边形ABCE=•AC•BE=×4×4=1.
②当点E在AD的延长线上时,易证四边形ABCE是平行四边形,
∵BE⊥AC,
∴四边形ABCE是菱形,
∵BC=AC=AB,
∴△ABC,△ACE是等边三角形,
∴S四边形ABCE=2××42=1.
本题考查四边形综合题、勾股定理、梯形的中位线定理、梯形的面积、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
26、(1)原方程无解;(2)x≤1,数轴见解析;
【解析】
(1)利用解分式方程的一般步骤求解即可.
(2)求出两个不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可.
【详解】
(1)去分母,方程两边同时乘以(x-3),可得: x-2=2(x-3)+1,
去括号可得:x-2=2x-6+1,
解得x=3,
检验:当x=3时,x-3=0,
∴x=3是分式方程的增根,原方程无解.
(2)解: ,
∵解不等式①得:x≤1,
解不等式②得:x<4,
∴不等式组的解集为:x≤1,
在数轴上表示不等式组的解集为:
.
此题考查解分式方程,解一元一次不等式组,在数轴上表示不等式组的解集的应用,解此题的关键是能根据不等式的解集找出不等式组的解集.
题号
一
二
三
四
五
总分
得分
批阅人
成绩类别
第一次月考
第二次月考
期中
第三次月考
第四次月考
期末
成绩/分
105
110
108
113
108
112
河北省石家庄市复兴中学2024-2025学年九年级数学第一学期开学检测模拟试题【含答案】: 这是一份河北省石家庄市复兴中学2024-2025学年九年级数学第一学期开学检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河北省隆尧县北楼中学等2025届九年级数学第一学期开学教学质量检测模拟试题【含答案】: 这是一份河北省隆尧县北楼中学等2025届九年级数学第一学期开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年河北省石家庄市第九中学数学九上开学教学质量检测模拟试题【含答案】: 这是一份2024年河北省石家庄市第九中学数学九上开学教学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。