河北省石家庄外国语教育集团2025届九年级数学第一学期开学统考试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若一组数据1,4,7,x,5的平均数为4,则x的值时( )
A.7B.5C.4D.3
2、(4分)如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是()
A.18B.28C.36D.46
3、(4分)使式子有意义的x的取值范围是( ).
A.x≤1B.x≤1且x≠﹣2
C.x≠﹣2D.x<1且x≠﹣2
4、(4分)以下列各组线段为边,能构成直角三角形的是( )
A.1cm,2cm,3cmB. cm, cm,5cmC.6cm,8cm,10cmD.5cm,12cm,18cm
5、(4分)如图,矩形是延长线上一点,是上一点,若则的度数是( )
A.B.
C.D.
6、(4分)下列式子变形是因式分解的是( )
A.x2-2x-3=x(x-2)-3
B.x2-2x-3=(x-1)2-4
C.(x+1)(x-3)=x2-2x-3
D.x2-2x-3=(x+1)(x-3)
7、(4分)将下列多项式分解因式,结果中不含因式x+1的是( )
A.x2−1 B.x2−2x+1 C.x(x−2)+(x−2) D.x2+2x+1
8、(4分)7 的小数部分是( )
A.4 -B.3 C.4 D.3
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,于点E,于点F,,求证:.
试将下面的证明过程补充完整填空:
证明:,已知
______
同位角相等,两直线平行,
两直线平行,同旁内角互补,
又已知,
______,同角的补角相等
______内错角相等,两直线平行,
______
10、(4分)如图所示,在菱形中,对角线与相交于点.OE⊥AB,垂足为,若,则的大小为____________.
11、(4分)一名模型赛车手遥控一辆赛车,先前进1m,然后,原地逆时针方向旋转角a(0°<α<180°).被称为一次操作.若五次操作后,发现赛车回到出发点,则角α为
12、(4分)甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后结果如下表:
某同学根据上表分析得出如下结论:(l)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀(每分钟输入汉字超过150个为优秀)的人数多于甲班优秀的人数;(3)甲班的成绩波动比乙班的成绩波动小、上述结论中正确的是______.(填序号)
13、(4分)如图,平行四边形中,点是边上一点,连接,将沿着翻折得,交于点.若,,,则_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知:如图,AD是△ABC的中线,E为AD的中点,过点A作AF∥BC交BE延长线于点F,连接CF.
(1)如图1,求证:四边形ADCF是平行四边形;
(2)如图2,连接CE,在不添加任何辅助线的情况下,请直接写出图2中所有与△BDE面积相等的三角形.
15、(8分)如图,在直角坐标系中,已知直线与轴相交于点,与轴交于点.
(1)求的值及的面积;
(2)点在轴上,若是以为腰的等腰三角形,直接写出点的坐标;
(3)点在轴上,若点是直线上的一个动点,当的面积与的面积相等时,求点的坐标.
16、(8分)先阅读下列材料,再解答下列问题:
材料:因式分解:(x+y)2+2(x+y)+1.
解:将“x+y”看成整体,令x+y=A,则
原式=A2+2A+1=(A+1)2.
再将“A”还原,得原式=(x+y+1)2.
上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:
(1)因式分解:1+2(x-y)+(x-y)2=_______________;
(2)因式分解:(a+b)(a+b-4)+4;
(3)求证:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.
17、(10分)如图,在直角坐标系中,A(0,4)、C(3,0),
(1)① 画出线段AC关于y轴对称线段AB;
② 将线段CA绕点C顺时针旋转一个角,得到对应线段CD,使得AD∥x轴,请画出线段CD;
(2)若直线y=kx平分(1)中四边形ABCD的面积,请直接写出实数k的值.
18、(10分)如图,在平面直角标系中,△ABC的三个顶点坐标为A(-3,1)、B(-4,-3)、C(-1,-4),△ABC绕原点顺时针旋转180°,得到△A1B1C1再将△A1B1C1向左平移5个单位得到△A1B1C1.
(1)画出△A1B1C1,并写出点A的对应点A1的坐标;
(1)画出△A1B1C1,并写出点A的对应点A1的坐标;
(3)P(a,b)是△ABC的边AC上一点,△ABC经旋转,平移后点P的对应点分别为P1、P1,请直接写出点P1的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)定义运算“”:a*b=a-ab,若,,a*b,则x的值为_________.
20、(4分)如图,在直角三角形ABC中,∠C=90°,AB=10,AC=8,点E、F分别为AC和AB的中点,则EF=____________.
21、(4分)命题“全等三角形的对应角相等”的逆命题是____________________________这个逆命题是______(填“真”或“假”)
22、(4分)当a=______时,最简二次根式与是同类二次根式.
23、(4分)如图,在Rt△ABC中,∠A=90°,AB=3,AC=4,P为边BC上一动点,PE⊥AB于E,PE⊥AC于F,则EF的最小值_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,将一个三角板放在边长为1的正方形上,并使它的直角顶点在对角线上滑动,直角的一边始终经过点,另一边与射线相交于点.
(1)当点在边上时,过点作分别交,于点,,证明:;
(2)当点在线段的延长线上时,设、两点间的距离为,的长为.
①直接写出与之间的函数关系,并写出函数自变量的取值范围;
②能否为等腰三角形?如果能,直接写出相应的值;如果不能,说明理由.
25、(10分)给出下列定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.
(1)如图1,四边形中,点,,,分别为边、、、的中点,则中点四边形形状是_______________.
(2)如图2,点是四边形内一点,且满足,,,点,,,分别为边、、、的中点,求证:中点四边形是正方形.
26、(12分)求证:顺次连接对角线相等的四边形的各边中点,所得的四边形是菱形.
(1)根据所给的图形,将已知、求证补充完整:
已知:如图,在四边形中,,_______________________.
求证:____________________.
(2)证明这个命题.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
运用平均数的计算公式即可求得x的值.
【详解】
解:依题意有:1+4+7+x+5=4×5,
解得x=1.
故选:D.
本题考查的是样本平均数的求法及运用,关键是熟练掌握平均数公式.
2、C
【解析】
∵四边形ABCD是平行四边形,∴AB=CD=5.
∵△OCD的周长为23,∴OD+OC=23﹣5=18.
∵BD=2DO,AC=2OC,
∴平行四边形ABCD的两条对角线的和=BD+AC=2(DO+OC)=36.
故选C.
3、B
【解析】
根据被开方数大于等于0,分母不等于0列式计算即可得解.
【详解】
解:由题意得,1﹣x≥0且1+x≠0,解得x≤1且x≠﹣1.
故选B.
考点:二次根式有意义的条件;分式有意义的条件.
4、C
【解析】
根据勾股定理的逆定理对四组数据进行逐一判断即可.
【详解】
A、∵12+22≠32,∴不能构成直角三角形;
B、∵,∴不能构成直角三角形;
C、∵62+82=102,∴能构成直角三角形;
D、∵52+122≠182,∴不能构成直角三角形,
故选C.
本题考查的是用勾股定理的逆定理判断三角形的形状,通常是看较小的两边的平方和是否等于最长边的平方,即只要三角形的三边满足a2+b2=c2,则此三角形是直角三角形.
5、B
【解析】
根据矩形性质求出∠BCD=90°,AB∥CD,根据平行线的性质和外角的性质求出∠ACD=3∠DCE,即可得出答案.
【详解】
解:∵四边形ABCD是矩形,
∴AB∥CD,∠BCD=90°,
∵∠ACB=24°,
∴∠ACD=90°-24°=66°,
∵∠ACF=∠AFC,∠FAE=∠E,∠AFC=∠FAE+∠E
∴∠AFC=2∠E
∵AB∥CD
∴∠E=∠DCE
∴∠ACD=3∠DCE=66°,
∴∠DCE=22°
故选:B.
本题考查了矩形的性质,平行线的性质,三角形外角性质等知识点,能求出∠FEA的度数是解此题的关键.
6、D
【解析】
因式分解就是把整式分解成几个整式积的形式,根据定义即可进行判断.
【详解】
A、没把一个多项式转化成几个整式积的形式,故A错误;
B、没把一个多项式转化成几个整式积的形式,故B错误;
C、是整式的乘法,故C次错误;
D、把一个多项式转化成几个整式积的形式,故D正确,
故选D.
本题考查了因式分解的定义,因式分解是整式的变形,并且因式分解与整式的乘法互为逆运算,熟练掌握因式分解的定义是解题的关键.
7、B
【解析】
直接利用平方差公式以及完全平方公式分解因式,进而得出答案.
【详解】
A、x2-1=(x+1)(x-1),故此选项不合题意;
B、x2-2x+1=(x-1)2,故此选项符合题意;
C、x(x-2)+(x-2)=(x+1)(x-2),故此选项不合题意;
D、x2+2x+1=(x+1)2,故此选项不合题意;
故选B.
此题主要考查了公式法以及提公因式法分解因式,熟练应用乘法公式是解题关键.
8、A
【解析】
先对进行估算,然后确定7-的范围,从而得出其小数部分.
【详解】
解:∵3<<4
∴-4<-<-3
∴3<7-<4
∴7-的整数部分是3
∴7-的小数部分是7--3=4-
故选:A.
本题考查了二次根式的性质和估计无理数的大小等知识点,主要考查学生能否知道在3和4之间,题目比较典型.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、垂直的定义;;BC;两直线平行,同位角相等
【解析】
根据垂线的定义结合平行线的判定定理可得出,由平行线的性质可得出,结合可得出,从而得出。根据平行线的性质即可得出,此题得解.
【详解】
证明:,
(垂直的定义),
(同位角相等,两直线平行),
(两直线平行,同旁内角互补),
又,
(同角的补角相等),
(内错角相等,两直线平行),
(两直线平行,同位角相等).
故答案为:垂直的定义;;;两直线平行,同位角相等.
本题考查了平行线的判定与性质以及垂线的定义,熟练掌握平行线的判定与性质定理是解题的关键.
10、65°
【解析】
先根据菱形的邻角互补求出∠BAD的度数,再根据菱形的对角线平分一组对角求出∠BAO的度数,然后根据直角三角形两锐角互余列式计算即可得解.
【详解】
在菱形ABCD中,∠ADC=130°,∴∠BAD=180°﹣130°=50°,∴∠BAO∠BAD50°=25°.
∵OE⊥AB,∴∠AOE=90°﹣∠BAO=90°﹣25°=65°.
故答案为65°.
本题考查了菱形的邻角互补,每一条对角线平分一组对角的性质,直角三角形两锐角互余的性质,熟练掌握性质是解题的关键.
11、7 2°或144°
【解析】
∵五次操作后,发现赛车回到出发点,∴正好走了一个正五边形,因为原地逆时针方向旋转角a(0°<α<180°),那么朝左和朝右就是两个不同的结论所以
∴角α=(5-2)•180°÷5=108°,则180°-108°=72°或者角α=(5-2)•180°÷5=108°,180°-72°÷2=144°
12、(1),(2).
【解析】
平均水平的判断主要分析平均数;优秀人数的判断从中位数不同可以得到;波动大小比较方差的大小.
【详解】
解:从表中可知,平均字数都是135,(1)正确;
甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,(2)正确;
甲班的方差大于乙班的,则说明乙班的波动小,所以(3)错误.
(1)(2)正确.
故答案为:(1)(2).
本题考查了平均数,中位数,方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.
13、
【解析】
通过证明△AB'F∽△DEF,可得,可求AB'的长,由折叠的性质可得AB=AB'= .
【详解】
解:∵AB′∥ED ∴△AB'F∽△DEF
∴ ∴ ∴AB'=
∵将△ABE沿着AE翻折得△AB′E, ∴AB=AB'=,
故答案为:.
本题考查了翻折变换,平行四边形的性质,相似三角形的判定和性质,利用相似三角形的性质求线段的长度是本题的关键.
三、解答题(本大题共5个小题,共48分)
14、 (1)证明见解析;(2)△AEF、 △ABE、 △ACE 、△CDE.
【解析】
(1)证明△AEF≌△DEB,可得AF=DB,再根据 BD=CD可得AF=CD,再由AF//CD,根据有一组对边平行且相等的四边形是平行四边形即可证得结论;
(2)根据三角形中线将三角形分成面积相等的两个三角形以及全等三角形的面积相等即可得.
【详解】
(1)D为BC的点、E为AD的中点
BD=CD、AE=DE
AF∥BC,
∴∠AFE=∠DBE,
在△AEF和△DEB中
,
∴△AEF≌△DEB,
∴AF=DB,
又∵ BD=CD
∴AF=CD,
又AF∥BC,
∴四边形ADCF是平行四边形;
(2)∵△AEF≌△DEB,
∴S△AEF=S△DEB,
∵D为BC中点,
∴S△CDE=S△DEB,
∵E为AD中点,
∴S△ABE=S△DEB,S△ACE= S△CDE=S△DEB,
综上,与△BDE面积相等的三角形有△AEF、 △ABE、 △ACE 、△CDE.
本题考查了平行四边形的判定,全等三角形的判定与性质,三角形中线的作用,熟练掌握相关知识是解题的关键.
15、(1)K=- ,的面积=3;(2)(2,0)或(2-)或C3(-2,0);(3)(4,-3)或(-4,9).
【解析】
①将代入直线可得K=- ,的面积=OB·OA==3.
②如详解图,分类讨论c1,c2,求坐标.
③如详解图,分类讨论p1,p2,求坐标.
【详解】
(1)将代入直线可得K=- ,点B坐标为(3,0),的面积=OB·OA·=2·3·=3.
②已知△ABC为等腰三角形,则AB=AC.可求出AB长为,以A为圆心,AB为半径画弧,与x轴交点有2个,易得C点坐标为C1(2,0)或C2(2-).
以B为圆心,BA为半径画弧与x轴交点有一个,坐标为C3(-2,0)
③设P点坐标为(x,)
∵S△BAM=,∴P点在线段AB外.
若P在线段BA延长线上时,S△PBM=S△BAM+S△PAM
=
=
=3,x=4.
所以P坐标为(4,-3),
若P在线段AB延长线上,S△PBM=S△PAM-S△BAM=﹣
若﹣=3,x=-4,则P点为(-4,9).
本题主要考察对称与函数方程的综合运用,能够根据图像求相关数据与方程是解题关键.
16、 (1)(x-y+1)2;(2)见解析;(3)见解析.
【解析】
分析:(1)把(x-y)看作一个整体,直接利用完全平方公式因式分解即可;(2)令A=a+b,带入后因式分解即可将原式因式分解;(3)将原式转化为(n²+3n) [(n+1)(n+2)]+1,进一步整理为(n²+3n+1) ²,根据n为正整数,从而说明原式是整数的平方.
本题解析:
(1).1+2(x-y)+(x+y) ²=(x﹣y+1)2;
(2)令A=a+b,则原式变为A(A﹣4)+4=A2﹣4A+4=(A﹣2)2,
故(a+b)(a+b﹣4)+4=(a+b﹣2)2;
(3)(n+1)(n+2)(n2+3n)+1=(n2+3n)[(n+1)(n+2)]+1
=(n2+3n)(n2+3n+2)+1
=(n2+3n)2+2(n2+3n)+1
=(n2+3n+1)2,
∵n为正整数,
∴n2+3n+1也为正整数,
∴代数式(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.
点睛;本题考查了因式分解的应用,解题的关键是认真审题你,理解题意,掌握整体思想解决问题.
17、(1)①作图见解析;②作图见解析;(2).
【解析】
试题分析:(1)、根据题意画出图形;(2)、将面积平分的直线经过平行四边形ABCD的对角线交点(1.5,2).
试题解析:(1)
(2)
考点:(1)、平行四边形的性质;(2)、一次函数的性质.
18、(1)如图,△A1B1C1为所作,见解析;点A的对应点A1的坐标为(3,1);(1)如图,△A1B1C1为所作,见解析;点A的对应点A1的坐标为(-1,1);(3)P1的坐标为(-a-5,-b).
【解析】
(1)根据题意,分别找出点A、B、C关于原点的对称点A1、B1、C1,然后连接A1B1、A1C1、B1C1即可,然后根据关于原点对称的两点坐标关系:横纵坐标均互为相反数即可得出结论;
(1)分别将点A1、B1、C1向左平移5个单位得到A1、B1、C1,然后连接A1B1、A1C1、B1C1即可,然后根据点的坐标平移规律:横坐标左减右加,纵坐标上加下减,即可得出结论;
(3)先根据关于原点对称的两点坐标关系:横纵坐标均互为相反数即可求出P1的坐标,然后根据点的坐标平移规律:横坐标左减右加,纵坐标上加下减,即可求出P1的坐标
【详解】
(1)分别找出点A、B、C关于原点的对称点A1、B1、C1,然后连接A1B1、A1C1、B1C1,如图,△A1B1C1为所作,点A的对应点A1的坐标为(3,1);
(1)分别将点A1、B1、C1向左平移5个单位得到A1、B1、C1,然后连接A1B1、A1C1、B1C1,如图,△A1B1C1为所作,点A的对应点A1的坐标为(-1,1);
(3)P(a,b)经过旋转得到的对应点P1的坐标为(-a,-b),把P1平移得到对应点P1的坐标为(-a-5,-b).
此题考查的是画关于原点对称的图形、画图形的平移、求关于原点对称的点的坐标和点平移后的坐标,掌握关于原点对称的图形的画法、图形平移的画法、关于原点对称的两点坐标关系和点的坐标平移规律是解决此题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、±2
【解析】
先根据新定义得出一元二次方程,求出方程的解即可.
【详解】
解:由题意可得:x+1-(x+1)•x=-3,
-x2=-4,
解得:x=±2,
故答案为:±2
本题考查了解一元二次方程的应用,解此题的关键是能根据已知得出一元二次方程,题目比较新颖,难度适中.
20、3;
【解析】
先利用勾股定理求出BC的长,然后再根据中位线定理求出EF即可.
【详解】
∵直角三角形ABC中,∠C=90°,AB=10,AC=8,
∴BC==6,
∵点E、F分别为AB、AC的中点,
∴EF是△ABC的中位线,
∴EF=BC=×6=3,
故答案为3.
本题考查了勾股定理,三角形中位线定理,熟练掌握这两个定理的内容是解本题的关键.
21、对应角相等的三角形是全等三角形 假
【解析】
把原命题的题设和结论作为新命题的结论和题设就得逆命题.
【详解】
命题“全等三角形的对应角相等”的逆命题是“对应角相等的三角形是全等三角形”;对应角相等的三角形不一定是全等三角形,这个逆命题是假命题.
故答案为(1). 对应角相等的三角形是全等三角形 (2). 假
本题考核知识点:互逆命题.解题关键点:注意命题的形式.
22、1.
【解析】
同类二次根式是指化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.
【详解】
解: ∵最简二次根式与是同类二次根式,
∴a﹣2=10﹣2a, 解得:a=1
故答案为:1.
本题考查同类二次根式.
23、2.4
【解析】
根据已知得出四边形AEPF是矩形,得出EF=AP,要使EF最小,只要AP最小即可,根据垂线段最短得出即可.
【详解】
连接AP,
∵∠A=90°,PE⊥AB,PF⊥AC,
∴∠A=∠AEP=∠AFP=90°,
∴四边形AFPE是矩形,
∴EF=AP,
要使EF最小,只要AP最小即可,
过A作AP⊥BC于P,此时AP最小,
在Rt△BAC中,∠A=90°,AC=4,AB=3,由勾股定理得:BC=5,
由三角形面积公式得:12×4=12×5×AP,
∴AP=2.4,
即EF=2.4
此题考查勾股定理,矩形的判定与性质,解题关键在于得出四边形AEPF是矩形
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)①.②能为等腰三角形,.
【解析】
(1)根据正方形的性质证明,即可求解;
(2)①根据题意作图,由正方形的性质可知当时,点在线段的延长线上,同理可得,得到MP=NQ,利用等腰直角三角形的性质可知MP=x,NC=CD-DN=1-x,CQ=y,代入MP=NQ化简即可求解;
②由是等腰三角形,∠PCQ=135°,CP=CQ成立,代入解方程即可求解 ,
【详解】
(1)证明:∵在正方形中,为对角线,
∴,,∵,
∴,,
∴,
又∵,
∴.
∵,∴.
又∵,∴,
∴,
在中,
∵
∴,∴.
(2)①如图,点在线段的延长线上,
同(1)可证,
∴MP=NQ,
在等腰直角三角形AMP中,AP==x
∴MP=x=AM,
∴NC=BM=AB-AM=1-x
故NQ=NC+CQ=1-x+y
∴x=1-x+y
化简得
当P点位于AC中点时,Q点恰好在C点,又AP<AC=
∴
∴与之间的函数关系是()
②当时,能为等腰三角形,
理由:当点在的延长线上,CQ=,CQ=AC-AP=,
由是等腰三角形,∠PCQ=∠PCB+∠BCQ=45°+90°=135°,
∴CP=CQ成立,
即时,解得.
此题主要考查正方形的性质综合,解题的关键是熟知全等三角形的判定与性质、等腰三角形的性质与判定.
25、 (1) 平行四边形;(2)见解析
【解析】
(1)如图1中,连接BD,根据三角形中位线定理只要证明EH∥FG,EH=FG即可.
(2)首先证明四边形EFGH是菱形.再证明∠EHG=90°.利用△APC≌△BPD,得∠ACP=∠BDP,即可证明∠COD=∠CPD=90°,再根据平行线的性质即可证明.
【详解】
(1)证明:如图1中,连接BD.
∵点E,H分别为边AB,DA的中点,
∴EH∥BD,EH=BD,
∵点F,G分别为边BC,CD的中点,
∴FG∥BD,FG=BD,
∴EH∥FG,EH=GF,
∴中点四边形EFGH是平行四边形.
故答案为平行四边形;
(2)证明:如图2中,连接,.
∵,∴即,
在和中,
,
∴,
∴
∵点,,分别为边,,的中点,
∴,,
由(1)可知,四边形是平行四边形,
∴四边形是菱形.
如图设与交于点.与交于点,与交于点.
∵,
∴,
∵,
∴
∵,,
∴,
∵四边形是菱形,
∴四边形是正方形.
本题考查平行四边形的判定和性质、全等三角形的判定和性质、菱形的判定和性质、正方形的判定和性质等知识,解题的关键是灵活应用三角形中位线定理,学会添加常用辅助线.
26、(1)E,F,G,H分别为四边形ABCD各边的中点,(2)四边形EFGH为菱形.
【解析】
(1)根据所给的图形,将已知、求证补充完整即可;
(2)由E,H分别为AB,AD的中点,得到EH为三角形ABD的中位线,根据三角形的中位线定理得到EH平行于BD,且等于BD的一半,同理FG平行于BD,且等于BD的一半,可得出EH与FG平行且相等,根据一组对边平行且相等的四边形为平行四边形得出EFGH为平行四边形,再由EF为三角形ABC的中位线,得出EF等于AC的一半,由EH等于BD的一半,且AC=BD,可得出EH=EF,根据邻边相等的平行四边形为菱形可得证.
【详解】
(1)已知:如图,在四边形中,,E,F,G,H分别为四边形ABCD各边的中点,
求证:四边形EFGH为菱形.
(2)证明:∵E,F,G,H分别为四边形ABCD各边的中点,
∴EH为△ABD的中位线,FG为△CBD的中位线,
∴EH∥BD,EH=BD,FG∥BD,FG=BD,
∴EH∥FG,EH=FG=BD,
∴四边形EFGH为平行四边形,
又EF为△ABC的中位线,
∴EF=AC,又EH=BD,且AC=BD,
∴EF=EH,
∴四边形EFGH为菱形.
此题考查了三角形的中位线定理,平行四边形的判定,以及菱形的判定,利用了数形结合及等量代换的思想,灵活运用三角形中位线定理是解本题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
班级
参加人数
中位数
方差
平均数
甲
55
149
191
135
乙
55
151
110
135
河北省石家庄28教育集团2024年九年级数学第一学期开学学业质量监测模拟试题【含答案】: 这是一份河北省石家庄28教育集团2024年九年级数学第一学期开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河北省石家庄市裕华区石家庄外国语教育集团2023-2024学年八年级上学期数学开学考试题: 这是一份河北省石家庄市裕华区石家庄外国语教育集团2023-2024学年八年级上学期数学开学考试题,共2页。
2024年河北省石家庄外国语教育集团考前中考模拟数学试题: 这是一份2024年河北省石家庄外国语教育集团考前中考模拟数学试题,共8页。试卷主要包含了如图3是一个几何体的三视图,已知,,那么代数式的值为,将的结果用科学记数法可表示为等内容,欢迎下载使用。

