贵州省六盘水市水城实验学校2024年数学九上开学教学质量检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如果等腰三角形两边长是6和3,那么它的周长是( )
A.15或12B.9C.12D.15
2、(4分)下列计算正确的是( )
A.B.C.D.
3、(4分)在平面直角坐标系中,点在
A.第一象限B.第二象限C.第三象限D.第四象限
4、(4分)对于反比例函数,下列说法中不正确的是( )
A.图像经过点(1.-2)
B.图像分布在第二第四象限
C.x>0时,y随x增大而增大
D.若点A()B()在图像上,若,则
5、(4分)正比例函数的图象向上平移1个单位后得到的函数解析式为( )
A.B.C.D.
6、(4分)已知 是一元二次方程 x2 x 1 0 较大的根,则下面对 的估计正确的是( )
A.0 1
B.1 1.5
C.1.5 2
D.2 3
7、(4分)如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是( )
A.19B.20C.21D.22
8、(4分)如图,点P(-3,3)向右平移m个单位长度后落在直线y=2x-1上,则m的值为( )
A.7B.6C.5D.4
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)关于x的分式方程的解为非正数,则k的取值范围是____.
10、(4分)如图,在平面直角坐标系xOy中,函数y1的图象与直线y1=x+1交于点A(1,a).则:
(1)k的值为______;
(1)当x满足______时,y1>y1.
11、(4分)若,则________.
12、(4分)在平面直角坐标系xOy中,正方形A1B1C1O、A2B2C2B1、A3B3C3B2,…,按图所示的方式放置.点A1、A2、A3,…和点B1、B2、B3,…分别在直线y=kx+b和x轴上.已知C1(1,﹣1),C2(,),则点A3的坐标是_____.
13、(4分)学校篮球集训队11名队员进行定点投篮训练,将11名队员在1分钟内投进篮筐的球数由小到大排序后为6,7,8,9,9,9,9,10,10,10,12,这组数据的众数和中位数分别是______________.
三、解答题(本大题共5个小题,共48分)
14、(12分)在初中阶段的函数学习中,我们经历了“确定函数的表达式——利用函数图象研究其性质一一运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义.
结合上面经历的学习过程,现在来解决下面的问题:在函数中,当时,当时,.
求这个函数的表达式;
在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象;
已知函数的图象如图所示,结合你所画的函数图象,直接写出不等式的解集.
15、(8分)如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,∠1=∠1.
(1)求证:AE=CF;
(1)求证:四边形EBFD是平行四边形.
16、(8分)已知:如图,是的中线,是线段的中点,.
求证:四边形是等腰梯形.
17、(10分)已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.
(1)求证:△ADE≌△CBF;
(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.
18、(10分)如图,直角坐标系xOy中,一次函数y=﹣x+5的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,4).
(1)求m的值及l2的解析式;
(2)求S△AOC﹣S△BOC的值;
(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)的整数部分是a,小数部分是b,则________.
20、(4分)如图,在正方形ABCD中,H为AD上一点,∠ABH=∠DBH,BH交AC于点G.若HD=2,则线段AD的长为_____.
21、(4分)如图,在3×3的方格中,A、B、C、D、E、F分别位于格点上,从C、D、E、F四点中任取一点,与点A、B为顶点作三角形,则所作三角形为等腰三角形的概率是__.
22、(4分)如图,在菱形ABCD中,已知DE⊥AB,AE:AD=3:5,BE=2,则菱形ABCD的面积是_______.
23、(4分)如图,在□中,⊥于点,⊥于点.若,,且□的周长为40,则□的面积为_______.
二、解答题(本大题共3个小题,共30分)
24、(8分)计算:(1)÷-×+ ;(2)(-1)101+(π-3)0+-.
25、(10分)已知函数.
(1)若这个函数的图象经过原点,求的值
(2)若这个函数的图象不经过第二象限,求的取值范围.
26、(12分)已知关于x的一元二次方程(m为常数)
(1)求证:不论m为何值,方程总有两个不相等的实数根;
(2)若方程有一个根是2,求m的值及方程的另一个根.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
由已知可得第三边是6,故可求周长.
【详解】
另外一边可能是3或6,根据三角形三边关系,第三边是6,
所以,三角形的周长是:6+6+3=15.
故选D
本题考核知识点:等腰三角形.解题关键点:分析等腰三角形三边的关系.
2、C
【解析】
根据二次根式的性质和计算法则分别计算可得正确选项。
【详解】
解:A、 不是同类二次根式,不能合并,故本选项错误;
B、不是同类二次根式,不能合并,故本选项错误;
C、正确;
D、,故故本选项错误。
故选:C
本题考查了二次根式的性质和运算,掌握运算法则是关键。
3、D
【解析】
根据各象限内点的坐标特征知点P(1,-5)在第四象限.
故选D.
4、D
【解析】
根据反比例函数图象上点的坐标特征及反比例函数的性质,即函数所在的象限和增减性对各选项作出判断.
【详解】
A.把点(1,-2)代入得:-2=-2,故该选项正确,不符合题意,
B.∵k=-2<0,
∴函数图像分布在第二第四象限,故该选项正确,不符合题意,
C.∵k=-2<0,
∴x>0时,y随x增大而增大,故该选项正确,不符合题意,
D.∵反比例函数的图象在二、四象限,
∴x<0时,y>0,x>0时,y<0,
∴x1<0
故选D.
本题考查反比例函数图象上点的坐标特征及反比例函数的性质,对于反比例函数,当k>0时,图象在一、三象限,在各象限内,y随x的增大而减小;当k<0时,图象在二、四象限,在各象限内,y随x的增大而增大;熟练掌握反比例函数的性质是解题关键.
5、A
【解析】
根据“上加下减”的平移原理,结合原函数解析式即可得出结论.
【详解】
根据“上加下减”的原理可得:
函数y=−2x的图象向上平移1个单位后得出的图象的函数解析式为y=−2x+1.
故选A
此题考查一次函数图象与几何变换,解题关键在于掌握平移的性质
6、C
【解析】
先解一元二次方程方程,再求出的范围,即可得出答案.
【详解】
解:解方程x2-x-1=0得:.
∵α是x2-x-1=0较大的根,
∴.
∵2<<3,
∴3<1+<4,
∴<<2.
故选C.
本题考查解一元二次方程和估算无理数大小的知识,正确的求解方程和合理的估算是解题的关键.
7、D
【解析】
观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.
【详解】
第个图案中有黑色纸片3×1+1=4张
第2个图案中有黑色纸片3×2+1=7张,
第3图案中有黑色纸片3×3+1=10张,
…
第n个图案中有黑色纸片=3n+1张.
当n=7时,3n+1=3×7+1=22.
故选D.
此题考查规律型:图形的变化类,解题关键在于观察图形找到规律.
8、C
【解析】
利用一次函数图象上点的坐标特征求出点P平移后的坐标,结合点P的坐标即可求出m的值.
【详解】
解:当y=3时,2x-1=3,
解得:x=2,
∴m=2-(-3)=1.
故选:C.
本题考查一次函数图象上点的坐标特征以及坐标与图形变化-平移,利用一次函数图象上点的坐标特征求出点P平移后的坐标是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、k≥1且k≠3.
【解析】
分式方程去分母转化为整式方程,由分式方程的解为非正数,确定出k的范围即可.
【详解】
去分母得:x+k+2x=x+1,
解得:x=,
由分式方程的解为非正数,得到⩽0,且≠−1,
解得:k≥1且k≠3,
故答案为k≥1且k≠3.
本题考查的是分式方程,熟练掌握分式方程是解题的关键.
10、2; x<﹣2或0<x<2.
【解析】
(2)将A点坐标分别代入两个解析式,可求k;
(2)由两个解析式组成方程组,求出交点,通过图象可得解.
【详解】
(2)∵函数y2的图象与直线y2=x+2交于点A(2,a),
∴a=2+2=2,
∴A(2,2),
∴2,
∴k=2,
故答案为:2;
(2)∵函数y2的图象与直线y2=x+2相交,
∴x+2,
∴x2=2,x2=﹣2,
∵y2>y2,∴x<﹣2或0<x<2,
故答案为:x<﹣2或0<x<2.
本题考查了反比例函数与一次函数的交点问题,待定系数法,关键是熟练利用图象表达意义解决问题.
11、
【解析】
由,得到a=b,代入所求的代数式,即可解决问题.
【详解】
∵,
∴a=b,
∴,
故答案为:.
该题主要考查了分式的化简与求值问题;解题的关键是将所给的条件或所要计算、求值的代数式,灵活变形、合理运算,求值.
12、(,)
【解析】
试题解析:连接A1C1,A2C2,A3C3,分别交x轴于点E、F、G,
∵正方形A1B1C1O、A2B2C2B1、A3B3C3B2,
∴A1与C1关于x轴对称,A2与C2关于x轴对称,A3与C3关于x轴对称,
∵C1(1,-1),C2(,),
∴A1(1,1),A2(,),
∴OB1=2OE=2,OB2=OB1+2B1F=2+2×(-2)=5,
将A1与A2的坐标代入y=kx+b中得:,
解得:,
∴直线解析式为y=x+,
设B2G=A3G=t,则有A3坐标为(5+t,t),
代入直线解析式得:b=(5+t)+,
解得:t=,
∴A3坐标为(,).
考点:一次函数综合题.
13、9;9
【解析】
【分析】根据中位数和众数定义可以分析出结果.
【详解】这组数据中9出现次数最多,故众数是9;按顺序最中间是9,所以中位数是9.
故答案为9;9
【点睛】本题考核知识点:众数,中位数.解题关键点:理解众数,中位数的定义.
三、解答题(本大题共5个小题,共48分)
14、; 详见解析;或
【解析】
(1)把x=0,y=4;x=1,y=3代入函数中,求出k、b即可;
(1)根据(1)中的表达式可以画出该函数的图象;
(3)根据图象可以直接写出所求不等式的解集.
【详解】
(1)把x=0,y=4代入得:4=,
∴b=3,
把x=1,y=3,b=3代入得:,
∴k=1,
即函数的表达式为,
(1)由题意得:,
画图象如下图:
(3)由上述图象可得:当x<0或x1时,,
故答案为:x<0或x1.
本题考查了待定系数法求函数表达式,函数图象的画法,由图象写出不等式的解集,掌握函数的图象和性质是解题的关键.
15、(1)见详解;(1)见详解
【解析】
(1)通过证明△ADE≌△CBF,由全等三角的对应边相等证得AE=CF.
(1)根据平行四边形的判定定理:对边平行且相等的四边形是平行四边形证得结论.
【详解】
证明:(1)如图:
∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,∠3=∠4
∵∠1=∠3+∠5,∠1=∠4+∠6,
∴∠1=∠1
∴∠5=∠6
∵在△ADE与△CBF中,∠3=∠4,AD=BC,∠5=∠6,
∴△ADE≌△CBF(ASA)
∴AE=CF
(1)∵∠1=∠1,
∴DE∥BF
又∵由(1)知△ADE≌△CBF,
∴DE=BF
∴四边形EBFD是平行四边形
16、见解析.
【解析】
先证明△ADE≌△MDC得出AE=MC,证出AE=MB,得出四边形AEBM是平行四边形,证出BE=AC,而AE∥BC,BE与AC不平行,即可得出结论.
【详解】
证明:∵
∴.
∵,
∴.
∴.
∵,
∴.
∴四边形是平行四边形.
∴.
而,
∴.
∵,与不平行,
∴四边形是梯形.
∴梯形是等腰梯形.
本题考查了等腰梯形的判定、平行四边形的判定、全等三角形的判定与性质;熟练掌握等腰梯形的判定,证明三角形全等是解题的关键.
17、(1)证明见解析(2)当四边形BEDF是菱形时,四边形AGBD是矩形;证明见解析;
【解析】
(1)在证明全等时常根据已知条件,分析还缺什么条件,然后用(SAS,ASA,SSS)来证明全等;
(2)先由菱形的性质得出AE=BE=DE,再通过角之间的关系求出∠2+∠3=90°即∠ADB=90°,所以判定四边形AGBD是矩形.
【详解】
解:证明:∵四边形是平行四边形,
∴,,.
∵点、分别是、的中点,
∴,.
∴.
在和中,
,
∴.
解:当四边形是菱形时,四边形是矩形.
证明:∵四边形是平行四边形,
∴.
∵,
∴四边形是平行四边形.
∵四边形是菱形,
∴.
∵,
∴.
∴,.
∵,
∴.
∴.
即.
∴四边形是矩形.
本题主要考查了平行四边形的基本性质和矩形的判定及全等三角形的判定.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.三角形全等的判定条件:SSS,SAS,AAS,ASA.
18、(1)m=2,l2的解析式为y=2x;(2)S△AOC﹣S△BOC=15;(3)k的值为或2或﹣.
【解析】
【分析】(1)先求得点C的坐标,再运用待定系数法即可得到l2的解析式;
(2)过C作CD⊥AO于D,CE⊥BO于E,则CD=4,CE=2,再根据A(10,0),B(0,5),可得AO=10,BO=5,进而得出S△AOC﹣S△BOC的值;
(3)分三种情况:当l3经过点C(2,4)时,k=;当l2,l3平行时,k=2;当11,l3平行时,k=﹣;故k的值为或2或﹣.
【详解】(1)把C(m,4)代入一次函数y=﹣x+5,可得
4=﹣m+5,
解得m=2,
∴C(2,4),
设l2的解析式为y=ax,则4=2a,
解得a=2,
∴l2的解析式为y=2x;
(2)如图,过C作CD⊥AO于D,CE⊥BO于E,则CD=4,CE=2,
y=﹣x+5,令x=0,则y=5;令y=0,则x=10,
∴A(10,0),B(0,5),
∴AO=10,BO=5,
∴S△AOC﹣S△BOC=×10×4﹣×5×2=20﹣5=15;
(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,
∴当l3经过点C(2,4)时,k=;
当l2,l3平行时,k=2;
当11,l3平行时,k=﹣;
故k的值为或2或﹣.
【点睛】本题主要考查一次函数的综合应用,解决问题的关键是掌握待定系数法求函数解析式、等腰直角三形的性质、全等三角形的判定和性质、勾股定理及分类讨论思想等.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2
【解析】
因为1<<2,由此得到的整数部分a,再进一步表示出其小数部分b.
【详解】
因为1<<2,
所以a=1,b=−1.
故(1+)(-1)=2,
故答案为:2.
此题考查估算无理数的大小,解题关键在于得到的整数部分a.
20、
【解析】
作HE⊥BD交BD于点E,在等腰直角三角形DEH中求出HE的长,由角平分线的性质可得HE=AH,即可求出AD的长.
【详解】
作HE⊥BD交BD于点E,
∵四边形ABCD是正方形,
∴∠BAD=90°, ∠ADB=45°,
∴△DEH是等腰直角三角形,
∴HE=DE,
∵HE2+DE2=DH2,
∴HE=,
∵∠ABH=∠DBH,∠BAD=90°, ∠BEH=90°,
∴HE=AH=,
∴.AD=.
故答案为.
本题考查了正方形的性质,角平分线的性质,勾股定理,等腰直角三角形的判定与性质,熟练掌握正方形的性质是解答本题的关键.
21、.
【解析】
解:根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F时,所作三角形是等腰三角形,故P(所作三角形是等腰三角形)=;
故答案为.
本题考查概率的计算及等腰三角形的判定,熟记等要三角形的性质及判定方法和概率的计算公式是本题的解题关键.
22、20
【解析】
先由线段比求出AE,AB,AD,再由勾股定理求出DE,根据面积公式再求结果.
【详解】
因为,四边形ABCD是菱形,
所以,AD=AB,
因为,AE:AD=3:5,
所以,AE:AB=3:5,
所以,AE:BE=3:2,
因为,BE=2,
所以,AE=3,AB=CD=5,
所以,DE= ,
所以,菱形ABCD的面积是AB∙DE=5×4=20
故答案为20
本题考核知识点:菱形性质.解题关键点:由勾股定理求出高.
23、48
【解析】
∵▱ABCD的周长=2(BC+CD)=40,
∴BC+CD=20①,
∵AE⊥BC于E,AF⊥CD于F,AE=4,AF=6,
∴S▱ABCD=4BC=6CD,
整理得,BC=CD②,
联立①②解得,CD=8,
∴▱ABCD的面积=AF⋅CD=6CD=6×8=48.
故答案为48.
二、解答题(本大题共3个小题,共30分)
24、(1) (2)
【解析】
根据二次根式的性质化简,再合并同类二次根式即可.
根据乘方、0指数幂、负整数指数幂及二次根式的性质化简后,再合并即可.
【详解】
(1)÷-×+=
(2)(-1)101+(π-3)0+-=
本题考查的是二次根式的性质及实数的运算,掌握二次根式的性质及乘方、0指数幂、负整数指数幂是关键.
25、(1)的值为3;(2)的取值范围为:.
【解析】
(1)将原点坐标(0,0)代入解析式即可得到m的值;
(2)分两种情况讨论:当2m+1=0,即m=-,函数解析式为:y=-,图象不经过第二象限;当2m+1>0,即m>-,并且m-3≤0,即m≤3;综合两种情况即可得到m的取值范围.
【详解】
(1)将原点坐标(0,0)代入解析式,得m−3=0,即m=3,
所求的m的值为3;
(2)当2m+1=0,即m=−,函数解析式为:y=−,图象不经过第二象限;
②当2m+1>0,即m>−,并且m−3⩽0,即m⩽3,所以有−
此题考查一次函数的性质,一次函数图象上点的坐标特征,解题关键在于原点坐标(0,0)代入解析式.
26、 (1)见解析;
(2) 即m的值为0,方程的另一个根为0.
【解析】
(1)可用根的判别式,计算判别式得到△=(m+2)2−4×1⋅m=m2+4>0,则方程有两个不相等实数解,于是可判断不论m为何值,方程总有两个不相等的实数根;
(2)设方程的另一个根为t,利用根与系数的关系得到2+t= ,2t=m,最终解出关于t和m的方程组即可.
【详解】
(1)证明:
△=(m+2)2−4×1⋅m=m2+4,
∵无论m为何值时m2≥0,
∴m2+4≥4>0,
即△>0,
所以无论m为何值,方程总有两个不相等的实数根.
(2)设方程的另一个根为t,
根据题意得2+t= ,2t=m,
解得t=0,
所以m=0,
即m的值为0,方程的另一个根为0.
本题考查根的判别式和根于系数关系,对于问题(1)可用根的判别式进行判断,在判断过程中注意对△的分析,在分析时可借助平方的非负性;问题(2)可先设另一个根为t,用根于系数关系列出方程组,在求解.
题号
一
二
三
四
五
总分
得分
2025届贵州省六盘水市水城县文泰学校数学九年级第一学期开学检测试题【含答案】: 这是一份2025届贵州省六盘水市水城县文泰学校数学九年级第一学期开学检测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届贵州省六盘水市名校数学九上开学教学质量检测模拟试题【含答案】: 这是一份2025届贵州省六盘水市名校数学九上开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年贵州省水城实验学校数学九上开学联考试题【含答案】: 这是一份2024-2025学年贵州省水城实验学校数学九上开学联考试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。