|试卷下载
终身会员
搜索
    上传资料 赚现金
    贵州省黔西南州2024年九上数学开学教学质量检测试题【含答案】
    立即下载
    加入资料篮
    贵州省黔西南州2024年九上数学开学教学质量检测试题【含答案】01
    贵州省黔西南州2024年九上数学开学教学质量检测试题【含答案】02
    贵州省黔西南州2024年九上数学开学教学质量检测试题【含答案】03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    贵州省黔西南州2024年九上数学开学教学质量检测试题【含答案】

    展开
    这是一份贵州省黔西南州2024年九上数学开学教学质量检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在平面直角坐标系中,矩形ABCD的对角线AC经过坐标原点O,矩形的边分别平行于坐标轴,点B在函数(k≠0,x>0)的图象上,点D的坐标为(﹣4,1),则k的值为( )
    A.B.C.4D.﹣4
    2、(4分)如图,▱ABCD的对角线AC,BD交于点O,AC⊥AB,AB=,BO=3,那么AC的长为( )
    A.2B.C.3D.4
    3、(4分)将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上,另一个顶
    点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图(3),
    则三角板的最大边的长为( )
    A.B.C.D.
    4、(4分)等式成立的x的取值范围在数轴上可表示为( )
    A.B.C.D.
    5、(4分) 下列命题:①直角三角形两锐角互余;②全等三角形的对应角相等;③两直线平行,同位角相等:④对角线互相平分的四边形是平行四边形.其中逆命题是真命题的个数是( )
    A.1B.2C.3D.4
    6、(4分)要使二次根式有意义,则的取值范围是( )
    A.B.C.D.
    7、(4分)甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差s2如下表所示:
    根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择( )
    A.甲B.乙C.丙D.丁
    8、(4分)如图,平行四边形ABCD的对角线AC与BD相交于点O,AE⊥BC于E,AB=,AC=2,BD=4,则AE的长为( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)函数中自变量x的取值范围是_______.
    10、(4分)直线y=﹣3x+5与x轴交点的坐标是_____.
    11、(4分)函数的自变量的取值范围是 .
    12、(4分)在一次身体的体检中,小红、小强、小林三人的平均体重为42kg,小红、小强的平均体重比小林的体重多6kg,小林的体重是___kg.
    13、(4分)在△MBN中,BM=6,BN=7,MN=10,点A、C、D分别是MB、NB、MN的中点,则四边形ABCD的周长是_______;
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知E、F分别是平行四边形ABCD的BC和DA边上的点,且CE=AF,问:DE与FB是否平行?说明理由.
    15、(8分)列方程解题:据专家预测今年受厄尔尼诺现象影响,我国大部分地区可能遇到洪涝灾害.进入防汛期前,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:
    “你们是用9天完成4800米长的大坝加固任务的”?
    “我们加固600米后采用新的加固模式,这样每天加固长度是原来的2倍”,
    通过这段对话请你求出该地驻军原来每天加固的米数.
    16、(8分)我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做等对角四边形.请解决下列问题:
    (1)已知:如图1,四边形ABCD是等对角四边形,∠A≠∠C,∠A=70°,∠B=75°,则∠C= °,∠D= °
    (2)在探究等对角四边形性质时:
    小红画了一个如图2所示的等对角四边形ABCD,其中,∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立,请你证明该结论;
    (3)图①、图②均为4×4的正方形网格,线段AB、BC的端点均在网点上.按要求在图①、图②中以AB和BC为边各画一个等对角四边形ABCD.
    要求:四边形ABCD的顶点D在格点上,所画的两个四边形不全等.
    (4)已知:在等对角四边形ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4,求对角线AC的长.
    17、(10分)一次函数y=kx+b(k≠0)的图象经过点A(3,1)和点B(0,-2),
    (1)求一次函数的表达式;
    (2)若点C在y轴上,且S△ABC=2S△AOB,直接写出点C的坐标.
    18、(10分)图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到F,使得EF=BE,连接CF.
    (1)求证:四边形BCFE是菱形.
    (2)若DE=4cm,∠EBC=60°,求菱形BCFE的面积。

    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)化简:= __________.
    20、(4分).在平面直角坐标系中,若点M(1,3)与点N(x,3)之间的距离是5,则x的值是____________.
    21、(4分)已知一个一元二次方程,它的二次项系数为1,两根分别是2和3,则这个方程是______.
    22、(4分)已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所能取到的整数值为________.
    23、(4分)抛掷一枚质地均匀的骰子1次,朝上一面的点数不小于3的概率是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,正方形中,是对角线上一个动点,连结,过作,,
    ,分别为垂足.
    (1)求证:;
    (2)①写出、、三条线段满足的等量关系,并证明;②求当,时,的长
    25、(10分)解下列方程:
    26、(12分)如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFMN的一边MN在边BC上,顶点E、F分别在AB、AC上,其中BC=24cm,高AD=12cm.
    (1)求证:△AEF∽△ABC:
    (2)求正方形EFMN的边长.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    由于点B的坐标不能求出,但根据反比例函数的几何意义只要求出矩形OEBF的面积也可,依据矩形的性质发现S矩形OGDH=S矩形OEBF,而S矩形OGDH可通过点D(﹣4,1)转化为线段长而求得.,在根据反比例函数的所在的象限,确定k的值即可.
    【详解】
    解:如图,根据矩形的性质可得:S矩形OGDH=S矩形OEBF,
    ∵D(﹣4,1),
    ∴OH=4,OG=1,
    ∴S矩形OGDH=OH•OG=4,
    设B(a,b),则OE=a,OF=﹣b,
    ∴S矩形OEBF,=OE•OF=﹣ab=4,
    又∵B(a,b)在函数(k≠0,x>0)的图象上,
    ∴k=ab=﹣4
    故选:D.
    考查矩形的性质,反比例函数图象上点的坐标特征以及灵活地将坐标与线段长的相互转化.
    2、D
    【解析】
    首先利用勾股定理计算AO长,再根据平行四边形的性质可得AC长.
    【详解】
    ∵AC⊥AB,AB=,BO=3,
    ∴AO==2,
    ∵四边形ABCD是平行四边形,
    ∴AC=2AO=4,
    故选:D.
    此题考查平行四边形的性质,解题关键是掌握平行四边形对角线互相平分.
    3、D
    【解析】
    分析:过另一个顶点C作垂线CD如图,可得直角三角形,根据直角三角形中30°角所对的边等于斜边的一半,可求出有45°角的三角板的直角直角边,再由等腰直角三角形求出最大边.
    解答:解:过点C作CD⊥AD,∴CD=3,
    在直角三角形ADC中,
    ∵∠CAD=30°,
    ∴AC=2CD=2×3=6,
    又三角板是有45°角的三角板,
    ∴AB=AC=6,
    ∴BC2=AB2+AC2=62+62=72,
    ∴BC=
    故选D.
    4、B
    【解析】
    根据二次根式有意义的条件即可求出的范围.
    【详解】
    由题意可知: ,
    解得:,
    故选:.
    考查二次根式的意义,解题的关键是熟练运用二次根式有意义的条件.
    5、C
    【解析】
    首先写出各个命题的逆命题,然后进行判断即可.
    【详解】
    ①直角三角形两锐角互余逆命题是如果三角形中有两个角互余,那么这个三角形是直角三角形,是真命题;
    ②全等三角形的对应角相等逆命题是对应角相等的两个三角形全等,是假命题;
    ③两直线平行,同位角相等逆命题是同位角相等,两直线平行,是真命题:
    ④对角线互相平分的四边形是平行四边形逆命题是如果四边形是平行四边形,那么它的对角线互相平分,是真命题.
    故选C.
    本题考查了写一个命题的逆命题的方法,首先要分清命题的条件与结论.
    6、D
    【解析】
    根据二次根式有意义的条件进行求解即可.
    【详解】
    ∵二次根式有意义

    解得
    故答案为:D.
    本题考查了二次根式的问题,掌握二次根式有意义的条件是解题的关键.
    7、A
    【解析】
    试题分析:根据方差和平均数的意义找出平均数大且方差小的运动员即可.
    解:∵甲的方差是3.5,乙的方差是3.5,丙的方差是15.5,丁的方差是16.5,
    ∴S甲2=S乙2<S丙2<S丁2,
    ∴发挥稳定的运动员应从甲和乙中选拔,
    ∵甲的平均数是561,乙的平均数是560,
    ∴成绩好的应是甲,
    ∴从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择甲;
    故选A.
    【点评】本题考查了方差和平均数.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    8、D
    【解析】
    由勾股定理的逆定理可判定△BAC是直角三角形,继而根据求出平行四边形ABCD的面积即可求解.
    【详解】
    解:∵AC=2,BD=4,四边形ABCD是平行四边形,
    ∴AO=AC=1,BO=BD=2,
    ∵AB=,
    ∴AB2+AO2=BO2,
    ∴∠BAC=90°,
    ∵在Rt△BAC中,BC=,
    S△BAC=×AB×AC=×BC×AE,
    ∴×2=AE,
    ∴AE=,
    故选:D.
    本题考查了勾股定理的逆定理和平行四边形的性质,能得出△BAC是直角三角形是解此题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、x≥-3
    【解析】
    根据被开方数必须大于或等于0可得:3+x≥0,解不等式即可.
    【详解】
    因为要使有意义,
    所以3+x≥0,
    所以x≥-3.
    故答案是:x≥-3.
    本题考查了函数自变量的取值范围,主要涉及二次根式有意义的条件,解题关键是熟记二次根式有意义的条件为:被开方数必须大于或等于0.
    10、 (,)
    【解析】
    试题分析:本题考查的是一次函数图象上点的坐标特点,熟知x轴上点的纵坐标为0是解答此题的关键.∵令y=0,则﹣3x+5=0,解得x=,∴直线y=﹣3x+5与x轴交点的坐标是(,0).
    考点:一次函数图象与x轴的交点
    11、x>1
    【解析】
    解:依题意可得,解得,所以函数的自变量的取值范围是
    12、1.
    【解析】
    可设小林的体重是xkg,根据平均数公式列出方程计算即可求解.
    【详解】
    解:设小林的体重是xkg,依题意有
    x+2(x+6)=42×3,
    解得x=1.
    故小林的体重是1kg.
    故答案为:1.
    考查了算术平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.
    13、13
    【解析】
    ∵点A,C,D分别是MB,NB,MN的中点,
    ∴CD∥AB,AD∥BC,
    ∴四边形ABCD为平行四边形,
    ∴AB=CD,AD=BC.
    ∵BM=6,BN=7,MN=10,点A,C分别是MB,NB的中点,
    ∴AB=3,BC=3.5,
    ∴四边形ABCD的周长=(AB+BC)×2=(3+3.5)×2=13.
    三、解答题(本大题共5个小题,共48分)
    14、DE∥FB
    【解析】
    试题分析:DE与FB平行,根据已知条件可证明DFBE是平行四边形,由平行四边形的性质可得DE∥FB.
    试题解析:
    DE∥FB.
    因为 在□ABCD中,
    AD∥BC (平行四边形的对边互相平行).
    且 AD=BC (平行四边形的对边相等),
    所以 DF∥BE,
    又 CE=AF,DE=AD﹣AF,BE=BC﹣CE,
    所以 DF=BE,
    所以 DFBE是平行四边形,(有一组对边平行且相等的四边形是平行四边形),
    所以 DE∥FB.(平行四边形的对边相等).
    15、该建筑队原来每天加固300米.
    【解析】
    设原来每天加固x米,则采用新的加固技术后每天加固2x米,然后依据共用9天完成任务进行解答即可.
    【详解】
    解:设原来每天加固x米,则采用新的加固技术后每天加固2x米.
    根据题意得:
    解得:x=300,
    经检验x=300是分式方程的解.
    答:该建筑队原来每天加固300米.
    本题主要考查的是分式方程的应用,找出题目的等量关系是解题的关键.
    16、(1)140°,1°;(2)证明见解析;(3)见解析;(4)2或2.
    【解析】
    试题分析:(1)根据四边形ABCD是“等对角四边形”得出∠D=∠B=1°,根据多边形内角和定理求出∠C即可;
    (2)连接BD,根据等边对等角得出∠ABD=∠ADB,求出∠CBD=∠CDB,根据等腰三角形的判定得出即可;
    (3)根据等对角四边形的定义画出图形即可求解;
    (4)分两种情况:①当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,先用含30°角的直角三角形的性质求出AE,得出DE,再用三角函数求出CD,由勾股定理求出AC;
    ②当∠BCD=∠DAB=60°时,过点D作DM⊥AB于点M,DN⊥BC于点N,则∠AMD=90°,四边形BNDM是矩形,先求出AM、DM,再由矩形的性质得出DN=BM=3,BN=DM=2,求出CN、BC,根据勾股定理求出AC即可.
    试题解析:
    (1)解:∵四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=1°,
    ∴∠D=∠B=1°,
    ∴∠C=360°﹣1°﹣1°﹣70°=140°;
    (2)证明:如图2,连接BD,
    ∵AB=AD,
    ∴∠ABD=∠ADB,
    ∵∠ABC=∠ADC,
    ∴∠ABC﹣∠ABD=∠ADC﹣∠ADB,
    ∴∠CBD=∠CDB,
    ∴CB=CD;
    (3)如图所示:
    (4)解:分两种情况:
    ①当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,如图3所示:
    ∵∠ABC=90°,∠DAB=60°,AB=5,
    ∴∠E=30°,
    ∴AE=2AB=10,
    ∴DE=AE﹣AD=10﹣4═6,
    ∵∠EDC=90°,∠E=30°,
    ∴CD=2,
    ∴AC=;
    ②当∠BCD=∠DAB=60°时,
    过点D作DM⊥AB于点M,DN⊥BC于点N,如图4所示:
    则∠AMD=90°,四边形BNDM是矩形,
    ∵∠DAB=60°,
    ∴∠ADM=30°,
    ∴AM=AD=2,
    ∴DM=2,
    ∴BM=AB﹣AM=5﹣2=3,
    ∵四边形BNDM是矩形,
    ∴DN=BM=3,BN=DM=2,
    ∵∠BCD=60°,
    ∴CN=,
    ∴BC=CN+BN=3,
    ∴AC=.
    综上所述:AC的长为或.
    故答案为:140,1.
    【点睛】四边形综合题目:考查了新定义、四边形内角和定理、等腰三角形的判定与性质、勾股定理、三角函数、矩形的判定与性质等知识;本题难度较大,综合性强,特别是(4)中,需要进行分类讨论,通过作辅助线运用三角函数和勾股定理才能得出结果.
    17、(1)y=x-2;(2)(0,2)或(0,-6)
    【解析】
    (1)根据一次函数y=kx+b(k≠0)的图象经过点A(3,1)和点B(0,-2),可以求得一次函数的表达式;
    (2)根据题意,设出点C的坐标,然后根据S△ABC=2S△AOB,即可求得点C的坐标.
    【详解】
    解:(1)∵一次函数y=kx+b(k≠0)的图象经过点A(3,1)和点B(0,-2),
    ∴,得,
    即一次函数的表达式是y=x-2;
    (2)设点C的坐标为(0,c),
    ∵点A(3,1),点B(0,-2),
    ∴OB=2,
    ∵S△ABC=2S△AOB,
    ∴,
    解得,c1=2,c2=-6,
    ∴C点坐标为 (0,2)或(0,-6).
    本题考查待定系数法求一次函数解析式、一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.
    18、 (1)证明见解析;
    (2)菱形的面积为4×2=8.
    【解析】
    (1)从所给的条件可知,DE是△ABC中位线,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以是菱形;(2)因为∠EBC为60°,所以菱形的边长也为4,求出菱形的高面积就可求.
    【详解】
    (1)证明:∵D、E分别是AB、AC的中点,
    ∴DE∥BC且2DE=BC,
    又∵BE=2DE,EF=BE,
    ∴EF=BC,EF∥BC,
    ∴四边形BCFE是平行四边形,
    又∵BE=FE,
    ∴四边形BCFE是菱形;
    (2)∵∠EBC=60°,
    ∴△EBC是等边三角形,
    ∴菱形的边长为4,高为2,
    ∴菱形的面积为4×2=8.
    本题考查三角形中位线定理和菱形的判定与性质,解题的关键是掌握三角形中位线定理和菱形的判定与性质.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、a+b
    【解析】
    将原式通分相减,然后用平方差公式分解因式,再约分化简即可。
    【详解】
    解:原式=
    =
    =
    =a+b
    此题主要考查了分式的混合运算,熟练掌握运算法则是解本题的关键.
    20、-4或1
    【解析】
    分析:点M、N的纵坐标相等,则直线MN在平行于x轴的直线上,根据两点间的距离,可列出等式|x-1|=5,从而解得x的值.
    解答:解:∵点M(1,3)与点N(x,3)之间的距离是5,
    ∴|x-1|=5,
    解得x=-4或1.
    故答案为-4或1.
    21、
    【解析】
    设方程为ax2+bx+c=0,则由已知得出a=1,根据根与系数的关系得,2+3=−b,2×3=c,求出即可.
    【详解】
    ∵二次项系数为1的一元二次方程的两个根为2,3,
    ∴2+3=−b,2×3=c,
    ∴b=-5,c=6
    ∴方程为,
    故答案为:.
    本题考查了根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−,x1x2=.
    22、-2
    【解析】
    试题分析:根据题意可得2k+3>2,k<2,解得﹣<k<2.因k为整数,所以k=﹣2.
    考点:一次函数图象与系数的关系.
    23、
    【解析】
    由题意知共有6种等可能结果,朝上一面的点数不小于3的有4种结果,利用概率公式计算可得.
    【详解】
    解:∵抛掷一枚质地均匀的骰子1次共有6种等可能结果,朝上一面的点数不小于3的有4种结果,
    所以朝上一面的点数不小于3的概率是=,
    故答案为:.
    此题考查了概率公式的应用.解题时注意:概率=所求情况数与总情况数之比.
    二、解答题(本大题共3个小题,共30分)
    24、(1)见解析;(2)①GE2+GF2=AG2,证明见解析;②的长为或.
    【解析】
    (1)根据正方形的性质得出△DGE和△BGF是等腰直角三角形,可得GE=DG,GF=BG,结合AB=BD即可得出结论;
    (2)①连接CG,由SAS证明△ABG≌△CBG,得出AG=CG,证出四边形EGFC是矩形,得出CE=GF,由勾股定理即可得出GE2+GF2=AG2;
    ②设GE=CF=x,则GF=BF=6−x,由①中结论得出方程求出CF=1或CF=5,再分情况讨论,由勾股定理求出BG即可.
    【详解】
    解:(1)∵四边形ABCD为正方形,
    ∴∠BCD=90°,∠ABD=∠CDB=∠CBD=45°,AB=BC=CD,
    ∴△ABD是等腰直角三角形,
    ∴AB=BD,
    ∵GE⊥CD,GF⊥BC,
    ∴△DGE和△BGF是等腰直角三角形,
    ∴GE=DG,GF=BG,
    ∴GE+GF=(DG+BG)=BD,
    ∴GE+GF=AB;
    (2)①GE2+GF2=AG2,
    证明:连接CG,如图所示:
    在△ABG和△CBG中,,
    ∴△ABG≌△CBG(SAS),
    ∴AG=CG,
    ∵GE⊥CD,GF⊥BC,∠BCD=90°,
    ∴四边形EGFC是矩形,
    ∴CE=GF,
    ∵GE2+CE2=CG2,
    ∴GE2+GF2=AG2;
    ②设GE=CF=x,则GF=BF=6−x,
    ∵GE2+GF2=AG2,
    ∴,
    解得:x=1或x=5,
    当x=1时,则BF=GF=5,
    ∴BG=,
    当x=5时,则BF=GF=1,
    ∴BG=,
    综上,的长为或.
    本题是一道四边形综合题,考查了正方形的性质,全等三角形的判定与性质,矩形的判定与性质,勾股定理及解一元二次方程等知识,通过作辅助线,构造出全等三角形是解题的关键.
    25、x1=5,x2=1.
    【解析】
    移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.
    【详解】
    x2-10x+25=2(x-5),
    (x-5)2-2(x-5)=0,
    (x-5)(x-5-2)=0,
    x-5=0,x-5-2=0,
    x1=5,x2=1.
    本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.
    26、(1)详见解析;(2)正方形的边长为8cm.
    【解析】
    (1)根据两角对应相等的两个三角形相似即可证明;
    (2)利用相似三角形的性质,构建方程即可解决问题;
    【详解】
    (1)证明:∵四边形EFMN是正方形,
    ∴EF∥BC,
    ∴∠AEF=∠B,∠AFE=∠C,
    ∴△AEF∽△ABC.
    (2)解:设正方形EFMN的边长为xcm.
    ∴AP=AD-x=12-x(cm)
    ∵△AEF∽△ABC, AD⊥BC,
    ∴,
    ∴,
    ∴x=8,
    ∴正方形的边长为8cm.
    本题考查相似三角形的判定和性质、正方形的性质等知识,解题的关键是熟练掌握基本知识.
    题号





    总分
    得分
    批阅人




    平均数(cm)
    561
    560
    561
    560
    方差s2
    3.5
    3.5
    15.5
    16.5
    相关试卷

    贵州省黔西南州、黔东南州、黔南州2024-2025学年九上数学开学达标检测试题【含答案】: 这是一份贵州省黔西南州、黔东南州、黔南州2024-2025学年九上数学开学达标检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届贵州省织金县九上数学开学检测试题【含答案】: 这是一份2025届贵州省织金县九上数学开学检测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届贵州省长顺县联考数学九上开学检测模拟试题【含答案】: 这是一份2025届贵州省长顺县联考数学九上开学检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map