|试卷下载
终身会员
搜索
    上传资料 赚现金
    广西南宁市青秀区第二中学2025届数学九年级第一学期开学质量跟踪监视试题【含答案】
    立即下载
    加入资料篮
    广西南宁市青秀区第二中学2025届数学九年级第一学期开学质量跟踪监视试题【含答案】01
    广西南宁市青秀区第二中学2025届数学九年级第一学期开学质量跟踪监视试题【含答案】02
    广西南宁市青秀区第二中学2025届数学九年级第一学期开学质量跟踪监视试题【含答案】03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广西南宁市青秀区第二中学2025届数学九年级第一学期开学质量跟踪监视试题【含答案】

    展开
    这是一份广西南宁市青秀区第二中学2025届数学九年级第一学期开学质量跟踪监视试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,矩形ABCD中,CD=6,E为BC边上一点,且EC=2将△DEC沿DE折叠,点C落在点C'.若折叠后点A,C',E恰好在同一直线上,则AD的长为( )
    A.8 B.9 C. D.10
    2、(4分)已知一次函数y=ax+b(a、b为常数且a≠0)的图象经过点(1,3)和(0,-2),则a-b的值为( )
    A.-1B.-3C.3D.7
    3、(4分)如图所示,矩形ABCD中,点E在DC上且DE:EC=2:3,连接BE交对角线AC于点O.延长AD交BE的延长线于点F,则△AOF与△BOC的面积之比为( )
    A.9:4B.3:2C.25:9D.16:9
    4、(4分)如图,在四边形ABCD中,AB=1,则四边形ABCD的周长为( )
    A.1B.4C.2D.2
    5、(4分)如图,在长方形中,绕点旋转,得到,使,,三点在同一条直线上,连接,则是( )
    A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形
    6、(4分)下列美丽的图案,不是中心对称图形的是( )
    A.B.
    C.D.
    7、(4分)如图,矩形ABCD的边AB在x轴上,AB的中点与原点O重合,AB=2,AD=1,点Q的坐标为(0,2).点P(x,0)在边AB上运动,若过点Q、P的直线将矩形ABCD的周长分成2:1两部分,则x的值为( )
    A.或-B.或-C.或-D.或-
    8、(4分)如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为( )
    A.7cmB.10cmC.12cmD.22cm
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)分解因式:____________
    10、(4分)如图,四边形ABCD是矩形,对角线AC、BD相交于点O,如果再添加一个条件,即可推出该四边形是正方形,这个条件可以是_________.
    11、(4分)如图,菱形ABCD中, E为边AD上一点,△ABE沿着BE折叠,点A的对应点F恰好落在边CD上,则___.
    12、(4分)分式有意义的条件是______.
    13、(4分)若,则=____
    三、解答题(本大题共5个小题,共48分)
    14、(12分)红树林学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下:
    1班:90,70,80,80,80,80,80,90,80,1;
    2班:70,80,80,80,60,90,90,90,1,90;
    3班:90,60,70,80,80,80,80,90,1,1.
    整理数据:
    分析数据:
    根据以上信息回答下列问题:
    (1)请直接写出表格中的值;
    (2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;
    (3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级新生共570人,试估计需要准备多少张奖状?
    15、(8分)(1)先列表,再画出函数的图象.
    (2)若直线向下平移了1个单位长度,直接写出平移后的直线表达式.
    16、(8分)某研究性学习小组在探究矩形的折纸问题时,将一块直角三角板的直角顶点绕矩形ABCD(AB<BC)的对角线的交点O旋转(①→②→③),图中的M、N分别为直角三角形的直角边与矩形ABCD的边CD、BC的交点.
    (1)该学习小组成员意外的发现图①中(三角板一边与CC重合),BN、CN、CD这三条线段之间存在一定的数量关系:CN2=BN2+CD2,请你对这名成员在图①中发现的结论说明理由;
    (2)在图③中(三角板一直角边与OD重合),试探究图③中BN、CN、CD这三条线段之间的数量关系,直接写出你的结论.
    (3)试探究图②中BN、CN、CM、DM这四条线段之间的数量关系,写出你的结论,并说明理由.
    17、(10分)以下是八(1)班学生身高的统计表和扇形统计图,请回答以下问题.
    八(1)班学生身高统计表
    (1)求出统计表和统计图缺的数据.
    (2)八(1)班学生身高这组数据的中位数落在第几组?
    (3)如果现在八(1)班学生的平均身高是1.63 ,已确定新学期班级转来两名新同学,新同学的身高分别是1.54 和1.77 ,那么这组新数据的中位数落在第几组?
    18、(10分)如图,用两张等宽的纸条交叉重叠地放在一起,重合的四边形是一个特殊的四边形.请判断这个特殊的四边形应该叫做什么,并证明你的结论.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,正方形中,对角线,交于点,点在上,,,垂足分别为点,,,则______.
    20、(4分)正十边形的外角和为__________.
    21、(4分)某种服装原价每件80元,经两次降价,现售价每件1.8元,这种服装平均每次降价的百分率是________。
    22、(4分)在平面直角坐标系中,点P(1,2)关于y轴的对称点Q的坐标是________;
    23、(4分)已知线段AB=100m,C是线段AB的黄金分割点,则线段AC的长约为。(结果保留一位小数)
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,为线段上一动点,分别过点作,,连接.已知,设.
    (1)用含的代数式表示的值;
    (2)探究:当点满足什么条件时,的值最小?最小值是多少?
    (3)根据(2)中的结论,请构造图形求代数式的最小值.
    25、(10分)先化简、再求值.,其中,.
    26、(12分)如图,在平面直角坐标系中,点O为坐标原点,直线l分别交x轴、y轴于A、B两点,AB=5,OA:OB =3:4.
    (1)求直线l的表达式;
    (2)点P是轴上的点,点Q是第一象限内的点.若以A、B、P、Q为顶点的四边形是菱形,请直接写出Q点的坐标.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    在Rt△DEC中,由勾股定理可得DE的长.设AD=x,则BE=x-1,AB=DC=C'D.
    由Rt△AC'D≌△EBA,得到BE=AC'=x-1.在Rt△AC'D中,由勾股定理即可得出结论.
    【详解】
    解:如图,由勾股定理得:DE=.
    设AD=x,则BE=x-1,AB=DC=C'D.
    ∵AD∥BE,∴∠DAE=∠AEB,∴Rt△AC'D≌△EBA(AAS),∴BE=AC'=x-1.
    在Rt△AC'D中,由勾股定理得:AD1=AC'1+C'D1,即x1=(x-1)1+61,解得:x=2,即AD=2.
    故选D.
    本题考查了矩形与折叠.证明Rt△AC'D≌△EBA是解答本题的关键.
    2、D
    【解析】
    将点(0, -2)代入该一次函数的解析式,得
    ,即b=-2.
    将点(1, 3)代入该一次函数的解析式,得

    ∵b=-2,
    ∴a=5.
    ∴a-b=5-(-2)=7.
    故本题应选D.
    3、C
    【解析】
    由矩形的性质可知:AB=CD,AB∥CD,进而可证明△AOB∽△COE,结合已知条件可得AO:OC=3:5,再根据相似三角形的性质:面积之比等于相似比的平方即可求出△AOF与△BOC的面积之比.
    【详解】
    解:∵四边形ABCD是矩形,
    ∴AB=CD,AB∥CD,
    ∴△AOB∽△COE,
    ∵DE:EC=2:3,
    ∴CE:CD=3:5,
    ∴CE:CD=CE:AB=CO:AO=3:5,
    ∴S△AOF:S△BOC=25:1.
    故选C.
    本题考查了矩形的性质、相似三角形的判定和性质,熟记两个三角形相似面积之比等于相似比的平方是解题的关键.
    4、B
    【解析】
    先判定四边形ABCD是平行四边形,再判断是菱形,即可求得答案.
    【详解】
    由图可知:AB∥CD,BC∥AD,
    ∴四边形ABCD是平行四边形,
    ∵AB=BC,
    ∴平行四边形ABCD是菱形,
    ∴四边形ABCD的周长=4×1=4,
    故选B.
    本题考查了菱形的判定和性质,熟记菱形的性质定理是解此题的关键.
    5、D
    【解析】
    证明∠GAE=90°,∠EAB=90°,根据旋转的性质证得AF=AC,∠FAE=∠CAB,得到∠FAC=∠EAB=90°,即可解决问题.
    【详解】
    解:∵四边形AGFE为矩形,
    ∴∠GAE=90°,∠EAB=90°;
    由题意,△AEF绕点A旋转得到△ABC,
    ∴AF=AC;∠FAE=∠CAB,
    ∴∠FAC=∠EAB=90°,
    ∴△ACF是等腰直角三角形.
    故选:D.
    本题主要考查了旋转的性质和等腰三角形的定义,解题的关键是灵活运用旋转的性质来分析、判断、解答.
    6、B
    【解析】
    解:A是中心对称图形,不符合题意;B不是中心对称图形,符合题意;C是中心对称图形,不符合题意;D是中心对称图形,不符合题意,
    故选B.
    本题考查中心对称图形,正确识图是解题的关键.
    7、D
    【解析】
    分类讨论:点P在OA上和点P在OB上两种情况.根据题意列出比例关系式,直接解答即可得出x得出值.
    【详解】
    如图,∵AB的中点与原点O重合,在矩形ABCD中,AB=2,AD=1,
    ∴A(﹣1,0),B(1,0),C(1,1).
    当点P在OB上时.易求G(,1)
    ∵过点Q、P的直线将矩形ABCD的周长分成2:1两部分,
    则AP+AD+DG=3+x,CG+BC+BP=3﹣x,
    由题意可得:3+x=2(3﹣x),
    解得x=.
    由对称性可求当点P在OA上时,x=﹣.
    故选:D.
    考查了一次函数的综合题,解题关键是运用数形结合思想.
    8、C
    【解析】
    根据折叠可得:AD=BD,
    ∵△ADC的周长为17cm,AC=5cm,
    ∴AD+DC=17﹣5=12(cm).
    ∵AD=BD,
    ∴BD+CD=12cm.
    故选C.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、a(x+5)(x-5)
    【解析】
    先公因式a,然后再利用平方差公式进行分解即可.
    【详解】

    故答案为a(x+5)(x-5).
    10、AC⊥BD
    【解析】
    对角线互相垂直的矩形是正方形,根据正方形的判定定理添加即可.
    【详解】
    ∵四边形ABCD是矩形,对角线AC、BD相交于点O,
    ∴当AC⊥BD时,四边形ABCD是正方形,
    故答案为:AC⊥BD.
    此题考查正方形的判定定理,熟记定理并运用解题是关键.
    11、35°
    【解析】
    由菱形的性质可得AB∥CD,AB=BC,∠A=∠C=70°,由平行线的性质可得∠BFC=∠ABF,由翻折的性质可得:BF=AB,∠ABE=∠EBF=∠ABF,等角代换可得∠ABF的度数,进而即可求解.
    【详解】
    ∵四边形ABCD是菱形,
    ∴AB∥CD,AB=BC,∠A=∠C=70°
    ∴∠BFC=∠ABF
    由翻折的性质可得:BF=AB,∠ABE=∠EBF=∠ABF
    ∴BC=BF
    ∴∠BFC=∠ABF=∠C=70°
    ∴∠ABE=∠ABF=35°
    故答案为:35°.
    本题主要考查菱形的性质和翻折的性质,解题的关键是利用菱形的性质和翻折的性质求出∠ABF的度数.
    12、x≠1
    【解析】
    分析:根据分母不为零分式有意义,可得答案.
    解:由有意义,得
    x﹣1≠0,
    解得x≠1
    有意义的条件是x≠1,
    故答案为:x≠1.
    13、
    【解析】
    先将变形成|3-a|+(b-2)2=0,根据非负数的性质得到3-a=0,b-2=0,求出a、b的值,然后代入所求代数式即可求出结果.
    【详解】
    因为,
    所以|3-a|+(b-2)2=0,
    所以3-a=0,b-2=0,
    所以a=3,b=2,
    所以=.
    考查了非负数的性质,首先根据非负数的性质确定待定的字母的取值,然后代入所求代数式计算即可解决问题.
    三、解答题(本大题共5个小题,共48分)
    14、(1),,;(2)2班成绩比较好;理由见解析;(3)估计需要准备76张奖状.
    【解析】
    (1)根据众数和中位数的概念求解可得;
    (2)分别从平均数、众数和中位数三个方面比较大小即可得;
    (3)利用样本估计总体思想求解可得.
    【详解】
    (1)由题意知,

    2班成绩重新排列为60,70,80,80,80,90,90,90,90,1,
    ∴;
    (2)从平均数上看三个班都一样;
    从中位数看,1班和3班一样是80,2班最高是85;
    从众数上看,1班和3班都是80,2班是90;
    综上所述,2班成绩比较好;
    (3)(张),
    答:估计需要准备76张奖状.
    本题主要考查众数、平均数、中位数,掌握众数、平均数、中位数的定义及其意义是解题的关键.
    15、(1)见解析;(2)
    【解析】
    (1)先列好表,再描点并连线即可,
    (2)根据函数图像上下平移规律:上加下减,即可得到答案.
    【详解】
    解:(1)列表如下:
    描点并连线:

    (2)直线向下平移了1个单位长度得到.
    本题考查的是一次函数的作图及上下平移,掌握以上知识是解题的关键.
    16、 (1)见解析;(1)BN1=NC1+CD1;(3)CM1+CN1=DM1+BN1,理由见解析.
    【解析】
    (1)连结AN,由矩形知AO=CO,∠ABN=90°,AB=CD,结合ON⊥AC得NA=NC,由∠ABN=90°知NA1=BN1+AB1,从而得证;
    (1)连接DN,在Rt△CDN中,根据勾股定理可得:ND1=NC1+CD1,再根据ON垂直平分BD,可得:BN=DN,从而可证:BN1=NC1+CD1;
    (3)延长MO交AB于点E,可证:△BEO≌△DMO,NE=NM,在Rt△BEN和Rt△MCN中,根据勾股定理和对应边相等,可证:CN1+CM1=DM1+BN1.
    【详解】
    (1)证明:连结AN,
    ∵矩形ABCD
    ∴AO=CO,∠ABN=90°,AB=CD,
    ∵ON⊥AC,
    ∴NA=NC,
    ∵∠ABN=90°,
    ∴NA1=BN1+AB1,
    ∴NC1=BN1+CD1.
    (1)如图1,连接DN.
    ∵四边形ABCD是矩形,
    ∴BO=DO,∠DCN=90°,
    ∵ON⊥BD,
    ∴NB=ND,
    ∵∠DCN=90°,
    ∴ND1=NC1+CD1,
    ∴BN1=NC1+CD1.
    (3)CM1+CN1=DM1+BN1
    理由如下:延长MO交AB于E,
    ∵矩形ABCD,
    ∴BO=DO,∠ABC=∠DCB=90°,AB∥CD,
    ∴∠ABO=∠CDO,∠BEO=∠DMO,
    ∴△BEO≌△DMO(ASA),
    ∴OE=OM,BE=DM,
    ∵MO⊥EM,
    ∴NE=NM,
    ∵∠ABC=∠DCB=90°,
    ∴NE1=BE1+BN1,NM1=CN1+CM1,
    ∴CN1+CM1=BE1+BN1 ,
    即CN1+CM1=DM1+BN1 .
    此题是四边形综合题,主要考查了矩形的性质,勾股定理,全等三角形的判定与性质等知识点.
    17、(1)统计表中:第二组人数4人,第四组人数18人,扇形图中:第三组38%,第五组:16%;(2)第四组;(3)第四组.
    【解析】
    (1)用第一组的人数和除以对应的百分比求出总人数,再用总人数分别乘以第二、四组的百分比求得其人数,根据百分比的概念求出第三、五组的百分比可得答案;
    (2)根据中位数的概念求解可得;
    (3)根据中位数的概念求解可得.
    【详解】
    解:(1)第一组人数为1,占被调查的人数百分比为2%,
    ∴被调查的人数为1÷2%=50(人),
    则第二组人数为50×8%=4,
    第四组人数为50×36%=18(人),
    第三组对应的百分比为×100%=38%,
    第五组的百分比为×100%=16%;
    (2)被调查的人数为50人,中位数是第25和26个数据平均数,而第一二三组数据有24个,∴第25和26个数都落在第四组,所以八(1)班学生身高这组数据的中位数落在第四组;
    (3)新学期班级转来两名新同学,此时共有52名同学,1.54 在第五组,1.77 在第二组.而新数据的第一二三组数据有25个数据,第26、27个数据都落在第四组,新数据的中位数是第26、27个数据的平均数,
    所以新数据的中位数落在第四组.
    本题考查了扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.
    18、四边形是菱形,见解析.
    【解析】
    根据菱形的判定方法即可求解.
    【详解】
    解:四边形是菱形,
    证明:过点分别作于点,于点,
    ∴,
    ∵两张纸条等宽
    ∴,,且,
    ∴四边形是平行四边形,
    ∴,
    ∴,
    ∴.
    ∴四边形是菱形.
    此题主要考查菱形的判定,解题的关键是熟知菱形的判定定理.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1.
    【解析】
    由S△BOE+S△COE=S△BOC即可解决问题.
    【详解】
    连接OE.
    ∵四边形ABCD是正方形,AC=10,
    ∴AC⊥BD,BO=OC=1,
    ∵EG⊥OB,EF⊥OC,
    ∴S△BOE+S△COE=S△BOC,
    ∴•BO•EG+•OC•EF=•OB•OC,
    ∴×1×EG+×1×EF=×1×1,
    ∴EG+EF=1.
    故答案为1.
    本题考查正方形的性质,利用面积法是解决问题的关键,这里记住一个结论:等腰三角形底边上一点到两腰的距离之和等于腰上的高,填空题可以直接应用,属于中考常考题型
    20、360°
    【解析】
    根据多边形的外角和是360°即可求出答案.
    【详解】
    ∵任意多边形的外角和都是360°,
    ∴正十边形的外交和是360°,
    故答案为:360°.
    此题考查多边形的外角和定理,熟记定理是解题的关键.
    21、10%
    【解析】
    设这种服装平均每件降价的百分率是x,则降一次价变为80(1-x),降两次价变为80(1-x)2,而这个值等于1.8,从而得方程,问题得解.
    【详解】
    解:设这种服装平均每件降价的百分率是x,由题意得
    80(1-x)2=1.8
    ∴(1-x)2=0.81
    ∴1-x=0.9或1-x=-0.9
    ∴x=10%或x=1.9(舍)
    故答案为10%.
    本题是一元二次方程的基本应用题,明白降两次价变为原来的(1-x)2倍是解题的关键.
    22、(-1,2)
    【解析】
    关于y轴对称的两点坐标特点:横坐标互为相反数,纵坐标相同.
    【详解】
    关于y轴对称的两点坐标特点:横坐标互为相反数,纵坐标相同.
    故Q坐标为(-1,2).
    故答案为:(-1,2).
    此题考查的是关于y轴对称的两点坐标的特点,掌握两点关于坐标轴或原点对称坐标特点是解决此题的关键.
    23、61.8m或38.2m
    【解析】由于C为线段AB=100cm的黄金分割点,
    则AC=100×61.8m
    或AC=100-.
    二、解答题(本大题共3个小题,共30分)
    24、(1);(2)三点共线时;(3)2
    【解析】
    试题分析:(1)由于△ABC和△CDE都是直角三角形,故可由勾股定理表示;
    (2)若点C不在AE的连线上,根据三角形中任意两边之和大于第三边知,AC+CE>AE,故当A、C、E三点共线时,AC+CE的值最小;
    (3)由(1)(2)的结果可作BD=1,过点B作AB⊥BD,过点D作ED⊥BD,使AB=2,ED=3,连接AE交BD于点C,则AE的长即为代数式的最小值,然后构造矩形AFDB,Rt△AFE,利用矩形的直角三角形的性质可求得AE的值.
    (1);
    (2)当三点共线时,的值最小.
    (3)如下图所示,作,过点作,过点作,使,.连结交于点,的长即为代数式的最小值.
    过点作交的延长线于点,得矩形,
    则,1.
    所以,即的最小值为2.
    考点:本题考查的是轴对称-最短路线问题
    点评:本题利用了数形结合的思想,求形如的式子的最小值,可通过构造直角三角形,利用勾股定理求解.
    25、;
    【解析】
    根据二次根式混合运算的法则化简,再将x,y的值代入计算即可.
    【详解】
    解:
    当,时
    本题考查了二次根式的混合运算,解题的关键是掌握二次根式的运算法则.
    26、(1)y=+4 (2)(3,5)或(3,)
    【解析】
    (1)首先根据已知条件以及勾股定理求得OA、OB的长度,即求得A、B的坐标,利用待定系数法即可求解;
    (2)分P在B点的上边和在B的下边两种情况画出图形进行讨论,求得Q的坐标.
    【详解】
    (1)∵OA:OB=3:4,AB=5,
    ∴根据勾股定理,得OA=3,OB=4,
    ∵点A、B在x轴、y轴上,
    ∴A(3,0),B(0,4),
    设直线l表达式为y=kx+b(k≠0),
    ∵直线l过点A(3,0),点B(0,4),
    ∴ ,
    解得 ,
    ∴直线l的表达式为y=+4;
    (2)如图,当四边形BP1AQ1是菱形时,则有BP1=AP1=AQ1,
    则有OP1=4-BP1,
    在Rt△AOP1中,有AP12=OP12+AO2,
    即AQ12=(4-AQ1)2+32,
    解得:AQ1=,所以Q1的坐标为(3,);
    当四边形BP2Q2A是菱形时,则有BP2 =AQ2=AB=5,
    所以Q2的坐标为(3,5),
    综上所述,Q点的坐标是(3,5)或(3,).
    本题考查了一次函数的性质、勾股定理、菱形的判定与性质,熟练掌握待定系数法、运用分类讨论与数形结合思想是解题的关键.
    题号





    总分
    得分
    分数
    人数
    班级
    60
    70
    80
    90
    1
    1班
    0
    1
    6
    2
    1
    2班
    1
    1
    3
    1
    3班
    1
    1
    4
    2
    2
    平均数
    中位数
    众数
    1班
    83
    80
    80
    2班
    83
    3班
    80
    80
    组别
    身高(单位:米)
    人数
    第一组
    1.85以上
    1
    第二组
    第三组
    19
    第四组
    第五组
    1.55以下
    8
    相关试卷

    广西南宁市青秀区第二中学2024-2025学年数学九上开学学业质量监测试题【含答案】: 这是一份广西南宁市青秀区第二中学2024-2025学年数学九上开学学业质量监测试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    广西南宁市广西大学附属中学2024-2025学年九年级数学第一学期开学质量跟踪监视试题【含答案】: 这是一份广西南宁市广西大学附属中学2024-2025学年九年级数学第一学期开学质量跟踪监视试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年广西壮族自治区南宁市青秀区第二中学数学九年级第一学期开学考试模拟试题【含答案】: 这是一份2024年广西壮族自治区南宁市青秀区第二中学数学九年级第一学期开学考试模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map