


广东省湛江市二十三中学2024-2025学年九上数学开学联考试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)八(1)班名同学一天的生活费用统计如下表:
则这名同学一天的生活费用中,平均数是( )
A.B.C.D.
2、(4分)如图,在中,对角线、相交于点,且,,则的度数为( )
A.35°B.40°C.45°D.55°
3、(4分)正方形具有而菱形不一定具有的性质是( )
A.四边相等B.对角线相等C.对角线互相垂直D.对角线互相平分
4、(4分)在下列四个新能源汽车车标的设计图中,属于中心对称图形的是( )
A.B.C.D.
5、(4分)若分式中的a、b的值同时扩大到原来的3倍,则分式的值( )
A.不变B.是原来的3倍C.是原来的6倍D.是原来的9倍
6、(4分)课间,小聪拿着老师的等腰直角三角板玩,不小心掉到两墙之间(如图),已知,∠ACB=90°,AC=BC, AB=1.如果每块砖的厚度相等,砖缝厚度忽略不计,那么砌墙砖块的厚度为( )
A.B.C.D.5
7、(4分)如图,在 中, 的垂直平行线交 于 点,则 的度数为( ).
A.B.C.D.
8、(4分)若关于x的分式方程无解,则m的值为( )
A.一l.5B.1C.一l.5或2D.一0.5或一l.5
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,已知A点的坐标为,直线与y轴交于点B,连接AB,若,则____________.
10、(4分)在x2+(________)+4=0的括号中添加一个关于的一次项,使方程有两个相等的实数根.
11、(4分)直线与坐标轴围成的图形的面积为________.
12、(4分)如图,正方形的边长为12,点、分别在、上,若,且,则______.
13、(4分)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的面积为49,则正方形A、B、C、D的面积之和为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,已知平行四边形ABCD中,∠ABC的平分线与边CD的延长线交于点E,与AD交于点F,且AF=DF,
①求证:AB=DE;
②若AB=3,BF=5,求△BCE的周长.
15、(8分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,的三个顶点的坐标分别为,,,解答下列问题:
(1)将向上平移1个单位长度,再向右平移5个单位长度后得到的,画出;
(2)绕原点逆时针方向旋转得到,画出;
(3)如果利用旋转可以得到,请直接写出旋转中心的坐标.
16、(8分)在今年“绿色清明,文明祭祀”活动中,某花店用元购进若干菊花,很快售完,接着又用元购进第二批菊花,已知第二批所购进菊花的数量是第一批所购进菊花数量的倍,且每朵菊花的进价比第一批每朵菊花的进价多元.
(1)求第一批每朵瓶菊花的进价是多少元?
(2)若第一批每朵菊花按元售价销售,要使总利润不低于元(不考虑其他因素),第二批每朵菊花的售价至少是多少元?
17、(10分)解下列各题:
(1)分解因式:9a2(x﹣y)+4b2(y﹣x);
(2)甲,乙两同学分解因式x2+mx+n,甲看错了n,分解结果为(x+2)(x+4);乙看错了m,分解结果为(x+1)(x+9),请分析一下m,n的值及正确的分解过程.
18、(10分)如图,已知分别为平行四边形的边上的点,且.
(1)求证:四边形是平行四边形;
(2)当,且四边形是菱形,求的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若直线y=kx+3的图象经过点(2,0),则关于x的不等式kx+3>0的解集是_____.
20、(4分)若点A(m+2,3)与点B(﹣4,n+5)关于y轴对称,则m+n=_______.
21、(4分)已知直线经过点(-2,2),并且与直线平行,那么________.
22、(4分)小玲要求△ABC最长边上的高,测得AB=8cm,AC=6cm,BC=10cm,则最长边上的高为_____cm.
23、(4分)已知某个正多边形的每个内角都是,这个正多边形的内角和为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在中,点、分别是、上的点,且.求证:四边形是平行四边形.
25、(10分)成都至西安的高速铁路(简称西成高铁)全线正式运营,至此,从成都至西安有两条铁路线可选择:一条是普通列车行驶线路(宝成线),全长825千米;另一条是高速列车行驶线路(西成高铁),全长660千米,高速列车在西成高铁线上行驶的平均速度是普通列车在宝成线上行驶的平均速度的3倍,乘坐普通列车从成都至西安比乘坐高速列车从成都至西安多用11小时,则高速列车在西成高铁上行驶的平均速度是多少?
26、(12分)(1)计算:
(2)如图,E、F是矩形ABCD边BC上的两点,且AF=DE.求证:BE=CF.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据加权平均数公式列出算式求解即可.
【详解】
解:这名同学一天的生活费用的平均数=.
故答案为C.
本题考查了加权平均数的计算,读懂题意,正确的运用公式是解题的关键
2、A
【解析】
由在中,对角线、相交于点,且可推出是矩形,可得∠DAB=90°进而可以计算的度数.
【详解】
解:在中
∵
∴AC=BD
∵在中, AC=BD
∴是矩形
所以∠DAB=90°
∵
∴
故选A
本题考查的是矩形的判定和性质.掌握是矩形的判定和性质是解题的关键.
3、B
【解析】
观察四个选项,分别涉及了四条边和对角线,我们应对照正方形和菱形边及对角线的性质,找出不同即可.
【详解】
正方形和菱形的四条边均相等,每条对角线均平分一组对角,正方形两条对角线相等且互相垂直平分,菱形对角线互相垂直且平分,但不相等.
故选B.
本题考查了正方形和菱形性质的知识,解决本题的关键是熟练掌握正方形和菱形的性质.
4、D
【解析】
根据中心对称图形的概念求解.
【详解】
解:A.不是中心对称图形,本选项错误;
B.不是中心对称图形,本选项错误;
C.不是中心对称图形,本选项错误;
D.是中心对称图形,本选项正确.
故选D.
本题主要考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.
5、B
【解析】
试题分析:根据分式的基本性质即可求出答案.
解:原式=;
故选B.
点睛:本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.
6、A
【解析】
根据全等三角形的判定定理证明△ACD≌△CEB,进而利用勾股定理,在Rt△AFB中,AF2+BF2=AB2,求出即可
【详解】
过点B作BF⊥AD于点F,
设砌墙砖块的厚度为xcm,则BE=2xcm,则AD=3xcm,
∵∠ACB=90,
∴∠ACD+∠ECB=90,
∵∠ECB+∠CBE=90,
∴∠ACD=∠CBE,
在△ACD和△CEB中,
,
∴△ACD≌△CEB(AAS),
∴AD=CE,CD=BE,
∴DE=5x,AF=AD−BE=x,
∴在Rt△AFB中,
AF2+BF2=AB2,
∴25x2+x2=12,
解得,x=(负值舍去)
故选A.
本题考查的是勾股定理的应用以及全等三角形的判定与性质,得出AD=BE,DC=CF是解题关键.
7、A
【解析】
根据等腰三角形的性质求出∠ABC=∠C=65°,根据线段的垂直平分线的性质得到AD=BD,得到答案.
【详解】
解:∵AB=AC,∠A=50°,
∴∠ABC=∠C=65°,
∵l垂直平分AB,
∴AD=BD,
∴∠ABD=∠A=50°,
∴∠CBD=∠ABC-∠ABD=65°-50°=15°.
故选:A
本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.
8、D
【解析】
方程两边都乘以x(x-1)得:(2m+x)x-x(x-1)=2(x-1),即(2m+1)x=-6,①
①∵当2m+1=0时,此方程无解,∴此时m=-0.2,
②∵关于x的分式方程无解,∴x=0或x-1=0,即x=0,x=1.
当x=0时,代入①得:(2m+1)×0=-6,此方程无解;
当x=1时,代入①得:(2m+1)×1=-6,解得:m=-1.2.
∴若关于x的分式方程无解,m的值是-0.2或-1.2.故选D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2
【解析】
如图,设直线y=x+b与x轴交于点C,由直线的解析式是y=x+b,可得OB=OC=b,继而得∠BCA=45°,再根据三角形外角的性质结合∠α=75°可求得∠BAC=30°,从而可得AB=2OB=2b,根据点A的坐标可得OA的长,在Rt△BAO中,根据勾股定理即可得解.
【详解】
设直线y=x+b与x轴交于点C,如图所示,
∵直线的解析式是y=x+b,
∴OB=OC=b,则∠BCA=45°;
又∵∠α=75°=∠BCA+∠BAC=45°+∠BAC,
∴∠BAC=30°,
又∵∠BOA=90°,
∴AB=2OB=2b,
而点A的坐标是(,0),
∴OA=,
在Rt△BAO中,AB2=OB2+OA2,
即(2b)2=b2+()2,
∴b=2,
故答案为:2.
本题考查了一次函数的性质、勾股定理的应用、三角形外角的性质等,求得∠BAC=30°是解答本题的关键.
10、(只写一个即可)
【解析】
设方程为x2+kx+4=0,根据方程有两个相等的实数根可知∆=0,据此列式求解即可.
【详解】
设方程为x2+kx+4=0,由题意得
k2-16=0,
∴k=±4,
∴一次项为(只写一个即可).
故答案为:(只写一个即可).
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.
11、1
【解析】
由一次函数的解析式求得与坐标轴的交点,然后利用三角形的面积公式即可得出结论.
【详解】
由一次函数y=x+4可知:一次函数与x轴的交点为(-4,0),与y轴的交点为(0,4),
∴其图象与两坐标轴围成的图形面积=×4×4=1.
故答案为:1.
本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
12、
【解析】
首先延长FD到G,使DG=BE,利用正方形的性质得∠B=∠CDF=∠CDG=90°,CB=CD;利用SAS定理得△BCE≌△DCG,利用全等三角形的性质易证△GCF≌△ECF,利用勾股定理可得DF,求出AF,设BE=x,利用GF=EF,解得x,再利用勾股定理可得CE.
【详解】
解:如图,延长FD到G,使DG=BE;
连接CG、EF;
∵四边形ABCD为正方形,
在△BCE与△DCG中,,
∴△BCE≌△DCG(SAS),
∴CG=CE,∠DCG=∠BCE,
∴∠GCF=45°,
在△GCF与△ECF中,,
∴△GCF≌△ECF(SAS),
∴GF=EF,
∵DF=,AB=AD=12,
∴AF=12−4=8,
设BE=x,则AE=12−x,EF=GF=4+x,
在Rt△AEF中,由勾股定理得:(12−x)2+82=(4+x)2,
解得:x=6,
∴BE=6,
∴CE=,
故答案为.
本题主要考查了全等三角形的判定及性质,勾股定理等,构建全等三角形,利用方程思想是解答此题的关键.
13、1
【解析】
根据勾股定理计算即可.
【详解】
解:最大的正方形的面积为1,
由勾股定理得,正方形E、F的面积之和为1,
∴正方形A、B、C、D的面积之和为1,
故答案为1.
本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.
三、解答题(本大题共5个小题,共48分)
14、①见解析②1
【解析】
①利用平行四边形的性质∠A=∠FDE,∠ABF=∠E,结合AF=DF,可判定△ABF≌△DEF,即可得出AB=DE;
②利用角平分线以及平行线的性质,即可得到AF=AB=3,进而得出BC=AD=6,CD=AB=3,依据△ABF≌△DEF,可得DE=AB=3,EF=BF=5,进而得到△BCE的周长.
【详解】
解:如图①∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∴∠A=∠FDE,∠ABF=∠E,
∵AF=DF,
∴△ABF≌△DEF,
∴AB=DE;
②∵BE平分∠ABC,
∴∠ABF=∠CBF,
∵AD∥BC,
∴∠CBF=∠AFB,
∴∠ABF=∠AFB,
∴AF=AB=3,
∴AD=2AF=6
∵四边形ABCD是平行四边形,
∴BC=AD=6,CD=AB=3,
∵△ABF≌△DEF,
∴DE=AB=3,EF=BF=5,
∴CE=6,BE=EF+BF=10,
∴△BCE的周长=BC+CE+BE=10+6+6=1.
本题主要考查了平行四边形的性质以及全等三角形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.
15、 (1)见解析;(2)见解析;(3)(3,-2).
【解析】
(1)分别将点A、B、C向上平移1个单位,再向右平移5个单位,然后顺次连接得到△A1B1C1,然后写出A1的坐标即可;
(2)根据网格结构找出点A、B、C以点O为旋转中心逆时针方向旋转90°后的对应点,然后顺次连接得到△A2B2O;
(3)利用旋转的性质得出答案.
【详解】
(1)如图所示,
为所求作的三角形;
(2)如图所示,
为所求作的三角形.
(3) 将△A2B2C2绕某点P旋转可以得到△A1B1C1,点的坐标为:.
考查了利用旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.
16、(1)第一批每朵菊花的进价是元;(2)第二批每朵菊花的售价至少是元.
【解析】
(1)设第一批每朵菊花的进价是x元,则第一批每朵菊花的进价是(x+1)元,根据数量=总价÷单价结合第二批所购菊花的数量是第一批所购菊花数量的2倍,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)设第二批每朵菊花的售价是y元,根据总利润=每朵菊花的利润×销售数量结合总利润不低于1500元,即可得出关于y的一元一次不等式,解之取其最小值即可得出结论.
【详解】
解:(1)设第一批每朵菊花的进价是元,则第二批每朵菊花的进价是元,
依题意得:
解得:,经检验,是原方程的解,且符合题意.
答:第一批每朵菊花的进价是元.
(2)设第二批每朵菊花的售价是元,
依题意,得:,
解得:.
答:第二批每朵菊花的售价至少是元.
本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.
17、(1)(x﹣y)(3a+1b)(3a﹣1b);(1)m=2,n=9,(x+3)1.
【解析】
(1)用提取公因式和平方差公式进行因式分解即可解答;
(1)根据已知条件分别求出m和n的值,然后进行因式分解即可解答.
【详解】
解:(1)原式=9a1(x﹣y)﹣4b1(x﹣y)
=(x﹣y)(9a1﹣4b1)
=(x﹣y)(3a+1b)(3a﹣1b);
(1)∵(x+1)(x+4)=x1+2x+8,甲看错了n,
∴m=2.
∵(x+1)(x+9)=x1+10x+9,乙看错了m,
∴n=9,
∴x1+mx+n=x1+2x+9=(x+3)1.
本题考查了用提取公因式和平方差公式进行因式分解,熟练掌握解题的关键.
18、(1)详见解析;(2)10
【解析】
(1)首先由已知证明AM∥NC,BN=DM,推出四边形AMCN是平行四边形.
(2)由已知先证明AN=BN,即BN=AN=CN,从而求出BN的长.
【详解】
(1)证明:四边形是平行四边形,
又.
即,
,
四边形是平行四边形;
(2)四边形是菱形,
,
又,
即,
,
,
.
此题考查的知识点是平行四边形的判定和性质及菱形的性质,解题的关键是运用平行四边形的性质和菱形的性质推出结论.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
把点(2,0)代入解析式,利用待定系数法求出k的值,然后再解不等式即可.
【详解】
∵直线y=kx+3的图象经过点(2,0),
∴0=2k+3,
解得k=-,
则不等式kx+3>0为-x+3>0,
解得:x<2,
故答案为:x<2.
本题考查了待定系数法,解一元一次不等式,求出k的值是解题的关键.
20、1.
【解析】
试题分析:关于y轴对称的两点横坐标互为相反数,纵坐标相等,则m+2=4,n+5=3,解得:m=2,n=-2,则m+n=2+(-2)=1.
考点:关于y轴对称
21、1.
【解析】
根据两直线平行的问题得到k=2,然后把(﹣2,2)代入y=2x+b可计算出b的值.
解:∵直线y=kx+b与直线y=2x+1平行,
∴k=2,
把(﹣2,2)代入y=2x+b得2×(﹣2)+b=2,解得b=1.
故答案为1.
22、4.1
【解析】
先根据勾股定理的逆定理判断出三角形是直角三角形,然后根据面积法求解.
【详解】
解:∵,
∴该三角形是直角三角形.
根据面积法求解:
S△ABC=AB•AC=BC•AD(AD为斜边BC上的高),
即AD= =(cm).
故答案为4.1.
本题主要考查了勾股定理的逆定理,解题的关键是利用两种求三角形面积的方法列等式求解.
23、720°
【解析】
先求得这个多边形外角的度数,再求得多边形的边数,根据多边形的内角和公式即可求得这个多边形的边数.
【详解】
∵某个正多边形的每个内角都是,
∴这个正多边形的每个外角都是,
∴这个多边形的边数为:=6.
∴这个正多边形的内角和为:(6-2)×180°=720°.
故答案为:720°.
本题考查了多边形的内外角和,熟练运用多边形的内外角和公式是解决问题的关键.
二、解答题(本大题共3个小题,共30分)
24、见解析.
【解析】
在▱ABCD中,根据平行四边形的性质可得AB=CD,AB∥CD,又由于BE=CF,则AE=CF,根据平行四边形的判定可证四边形AECF是平行四边形.
【详解】
∵四边形是平行四边形,
∴且
∵
∴
∴
∴四边形是平行四边形
本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.
25、高速列车在西成高铁上行驶的平均速度为165 km/h
【解析】
设普通列车的平均速度为v km/h,根据题意列出方程即可求出答案.
【详解】
解:设普通列车的平均速度为v km/h,
∴高速列车的平均速度为3vkm/h,
∴由题意可知:=+11,
∴解得:v=55,
经检验:v=55是原方程的解,
∴3v=165,
答:高速列车在西成高铁上行驶的平均速度为165 km/h.
本题考查分式方程,解题的关键是正确找出题中的等量关系,本题属于基础题型.
26、(1)1;(2)见解析
【解析】
分析:(1)根据绝对值的性质,二次根式的性质和化简,乘方的意义,直接计算并化简即可;
(2)根据矩形的性质,得到∠B=∠C=90°,AB=CD,然后根据HL证明Rt△ABF≌Rt△DCE,进而根据全等三角形的性质得到结论.
详解:(1)原式=;
(2)∵四边形ABCD是矩形,∴∠B=∠C=90°,AB=CD,
∵AF=DE,∴Rt△ABF≌Rt△DCE,∴BF=EC,∴BE=CF.
点睛:此题猪腰考查了实数的运算和矩形的性质的应用,解(1)的关键是熟记绝对值的性质,二次根式的性质和化简,乘方的意义,解(2)的关键是灵活运用矩形的性质证明Rt△ABF≌Rt△DCE.
题号
一
二
三
四
五
总分
得分
批阅人
生活费(元)
学生人数(人)
甘肃省武威市第二十三中学2024-2025学年数学九上开学调研模拟试题【含答案】: 这是一份甘肃省武威市第二十三中学2024-2025学年数学九上开学调研模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
安徽省安庆市区二十三校2024-2025学年数学九上开学联考模拟试题【含答案】: 这是一份安徽省安庆市区二十三校2024-2025学年数学九上开学联考模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届广东省湛江市三校联考数学九上开学考试试题【含答案】: 这是一份2025届广东省湛江市三校联考数学九上开学考试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。