广东省湛江市第二十二中学2024-2025学年九年级数学第一学期开学预测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,以正方形的顶点为坐标原点,直线为轴建立直角坐标系,对角线与相交于点,为上一点,点坐标为,则点绕点顺时针旋转90°得到的对应点的坐标是( )
A.B.C.D.
2、(4分)2013年,某市发生了严重干旱,该市政府号召居民节约用水,为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果统计如图,则关于这10户家庭的月用水量,下列说法错误的是( )
A.众数是6B.极差是2C.平均数是6D.方差是4
3、(4分)多项式x2﹣1与多项式x2﹣2x+1的公因式是( )
A.x﹣1B.x+1C.x2﹣1D.(x﹣1)2
4、(4分)在Rt△ABC中,∠C=90°.如果BC=3,AC=5,那么AB=( )
A.B.4C.4或D.以上都不对
5、(4分)如图,在平行四边形中,对角线交于点,并且,点是边上一动点,延长交于点,当点从点向点移动过程中(点与点,不重合),则四边形的变化是( )
A.平行四边形→菱形→平行四边形→矩形→平行四边形
B.平行四边形→矩形→平行四边形→菱形→平行四边形
C.平行四边形→矩形→平行四边形→正方形→平行四边形
D.平行四边形→矩形→菱形→正方形→平行四边形
6、(4分)如图,函数y=kx与y=ax+b的图象交于点P(-4,-2).则不等式kx<ax+b的解集是( )
A.x<-2B.x>-2C.x<-4D.x>-4
7、(4分)在某市举办的垂钓比赛上,5名垂钓爱好者参加了比赛,比赛结束后,统计了他们各自的钓鱼条数,成绩如下:4,5,1,6,1.则这组数据的中位数是( )
A.5 B.6 C.7 D.1
8、(4分)已知点P(a,m),Q(b,n)都在反比例函数y=﹣的图象上,且a<0<b,则下列结论一定正确的是( )
A.m<nB.m>nC.m+n<D.m+n>0
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若分式 有意义,则的取值范围是_______________ .
10、(4分)如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若,,则阴影部分的面积为__________.
11、(4分)直线沿轴平移3个单位,则平移后直线与轴的交点坐标为 .
12、(4分)如图,在△ABC中,点E、D、F分别在边AB、BC、CA上,且DE∥CA,DF∥BA,下列四种说法:①四边形AEDF是平行四边形;②如果∠BAC=90°,那么四边形AEDF是矩形;③如果AD平分∠BAC,那么四边形AEDF是菱形;④如果AD⊥BC且AB=AC,那么四边形AEDF是菱形,其中,正确的有__________.(填序号)
13、(4分)若代数式在实数范围内有意义,则实数x的取值范围是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点分别为A(0,4),B(﹣4,2),C(0,2).
(1)画△A1B1C1,使它与△ABC关于点C成中心对称;
(2)平移△ABC,使点A的对应点A2坐标为(﹣2,4),画出平移后对应的△A2B2C2;
(3)若将△A1B1C1绕点P旋转可得到△A2B2C2,请直接写出旋转中心P的坐标.
15、(8分)如图,反比例函数 y=的图象与一次函数y=mx+b的图象交于两点A(1,3),B(n,-1).
(1)求反比例函数与一次函数的函数关系式;
(2)根据图象,直接回答:当x取何值时,一次函数的值大于反比例函数的值;
(3)连接AO、BO,求△ABO的面积;
(4)在y轴上存在点P,使△AOP为等腰三角形,请直接写出点P的坐标.
16、(8分)如图,直线l1解析式为y=2x﹣2,且直线l1与x轴交于点D,直线l2与y轴交于点A,且经过点B(3,1),直线l1、l2交于点C(2,2).
(1)求直线l2的解析式;
(2)根据图象,求四边形OACD的面积.
17、(10分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点在小正方形的顶点上.
(1)在图1中画一个以AB为边的平行四边形ABCD,点C、D在小正方形的顶点上,且平行四边形ABCD的面积为15.
(2)在图2中画一个以AB为边的菱形ABEF(不是正方形),点E、F在小正方形的顶点上,请直接写出菱形ABEF的面积;
18、(10分)如图,把两个大小相同的含有45º角的直角三角板按图中方式放置,其中一个三角板的锐角顶点与另一个三角板的直角顶点重合于点A,且B,C,D在同一条直线上,若AB=2,求CD的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=6cm,则EF=_____cm.
20、(4分)已知点P(m-3,m+1)在第二象限,则m的取值范围是_______________.
21、(4分)已知关于函数,若它是一次函数,则______.
22、(4分)正方形A1B1C1O,正方形A2B2C2C1,正方形A3B3C3C2,按如图所示的方式放置在平面直角坐标系中,若点A1、A2、A3和C1、C2、C3…分别在直线y=x+1和x轴上,则点B2019的坐标是_____.
23、(4分)通过测量一棵树的树围(树干的周长)可以计算出它的树龄.通常规定以树干离地面1.5 m的地方作为测量部位.某树栽种时的树围为5 cm,以后树围每年增长3 cm.假设这棵数生长x年其树围才能超过2.4 m.列满足x的不等关系:__________________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,E、F分别为△ABC的边BC、CA的中点,延长EF到D,使得DF=EF,连接DA、DB、AE.
(1)求证:四边形ACED是平行四边形;
(2)若AB=AC,试说明四边形AEBD是矩形.
25、(10分)如图,城气象台测得台风中心在城正西方向的处,以每小时的速度向南偏东的方向移动,距台风中心的范围内是受台风影响的区域.
(1)求城与台风中心之间的最小距离;(2)求城受台风影响的时间有多长?
26、(12分)计算:(1);(2)解方程.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
如图,连接PE,点P绕点E顺时针旋转90°得到的对应点P′在x轴上,根据正方形的性质得到∠ABC=90°,∠AEB=90°,AE=BE,∠EAP′=∠EBP=45°,由点P坐标为(a,b),得到BP=b,根据全等三角形的性质即可得到结论.
【详解】
如图,连接PE,点P绕点E顺时针旋转90°得到的对应点P′在x轴上,
∵四边形ABCD 是正方形,
∴∠ABC=90°,
∴∠AEB=90°,AE=BE,∠EAP′=∠EBP=45°,
∵点P坐标为(a,b),
∴BP=b,
∵∠PEP′=90°,
∴∠AEP′=∠PEB,
在△AEP′与△BEP中,
,
∴△AEP′≌△BEP(ASA),
∴AP′=BP=b,
∴点P′的坐标是(b,0),
故选:D.
此题考查全等三角形的判断与性质,正方形的性质,解题关键在于作辅助线.
2、D
【解析】
众数是一组数据中出现次数最多的数,极差是数据中最大的与最小的数据的差,平均数是所有数据的和除以数据的个数,分别根据以上定义可分别求出众数,极差和平均数,然后根据方差的计算公式进行计算求出方差,即可得到答案.
【详解】
解:这组数据6出现了6次,最多,所以这组数据的众数为6;
这组数据的最大值为7,最小值为5,所以这组数据的极差=7﹣5=2;
这组数据的平均数=(5×2+6×6+7×2)=6;
这组数据的方差S2= [2•(5﹣6)2+6•(6﹣6)2+2•(7﹣6)2]=0.4;
所以四个选项中,A、B、C正确,D错误.
故选:D.
本题考查了方差的定义和意义:数据x1,x2,…xn,其平均数为,则其方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2];方差反映了一组数据在其平均数的左右的波动大小,方差越大,波动越大,越不稳定;方差越小,波动越小,越稳定.也考查了平均数和众数以及极差的概念.
3、A
【解析】
x2-1=(x+1)(x-1),
x2-2x+1=(x-1)2,
所以公因式是:x-1,
故选A.
本题考查多项式的公因式,解题的关键是把每一个多项式都因式分解.
4、A
【解析】
解:∵∠C=90°,AC=5,BC=3,∴AB===.故选A.
5、A
【解析】
根据图形结合平行四边形、矩形、菱形的判定逐项进行判断即可.
【详解】
解:点E从D点向A点移动过程中,当∠EOD<15°时,四边形AFCE为平行四边形,
当∠EOD=15°时,AC⊥EF,四边形AFCE为菱形,
当15°<∠EOD<75°时,四边形AFCE为平行四边形,
当∠EOD=75°时,∠AEF=90°,四边形AFCE为矩形,
当75°<∠EOD<105°时,四边形AFCE为平行四边形,
故选A.
本题考查了平行四边形、矩形、菱形的判定的应用,主要考查学生的理解能力和推理能力.
6、C
【解析】
以交点为分界,结合图象写出不等式kx<ax+b的解集即可.
【详解】
函数y=kx和y=ax+b的图象相交于点P(-1,-2).
由图可知,不等式kx<ax+b的解集为x<-1.
故选C.
此题主要考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.关键是求出A点坐标以及利用数形结合的思想.
7、B
【解析】把这数从小到大排列为:4,5,6,1,1,最中间的数是6,则这组数据的中位数是6,
故选B.
8、B
【解析】
根据反比例点P(a,m),Q(b,n)都在反比例函数y=﹣ 的图象上,且a<0<b,可以判断点P和点Q所在的象限,进而判断m和n的大小.
【详解】
解:∵点P(a,m),Q(b,n)都在反比例函数y=﹣的图象上,且a<0<b,
∴点P在第二象限,点Q在第四象限,
∴m>0>n;
故选:B.
本题主要考查反比例函数的性质,关键在于根据反比例函数的k值判断反比例函数的图象分布.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
【分析】根据分式有意义的条件进行求解即可得.
【详解】由题意得:x-1≠0,
解得:x≠1,
故答案为:x≠1.
【点睛】本题考查了分式有意义的条件,熟知分母不为0时分式有意义是解题的关键.
10、40
【解析】
作出辅助线,因为△ADF与△DEF同底等高,所以面积相等,所以阴影图形的面积可解.
【详解】
如图,连接EF
∵△ADF与△DEF同底等高,
∴S =S
即S −S =S −S,
即S =S =15cm,
同理可得S =S =25cm,
∴阴影部分的面积为S +S =15+25=40cm.
故答案为40.
此题考查平行四边形的性质,解题关键在于进行等量代换.
11、(0,2)或(0,)
【解析】
试题分析:∵直线沿轴平移3个单位,包括向上和向下,
∵平移后的解析式为或.
∵与轴的交点坐标为(0,2);与轴的交点坐标为(0,).
12、①②③④
【解析】
①∵DE∥CA,DF∥BA,∴四边形AEDF是平行四边形;故①正确;
②若∠BAC=90°,则平行四边形AEDF是矩形;故②正确;
③若AD平分∠BAC,则DE=DF;所以平行四边形是菱形;故③正确;
④若AD⊥BC,AB=AC;根据等腰三角形三线合一的性质知:DA平分∠BAC,由③知:此时平行四边形AEDF是菱形;故④正确;所以正确的结论是①②③④.
13、
【解析】
根据分式有意义的条件即可解答.
【详解】
因为在实数范围内有意义,所以,即.
本题考查分式有意义的条件,解题的关键是知道要使得分式有意义,分母不为0.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(2)见解析;(3)P(﹣1,2)
【解析】
(1)分别作出,,的对应点,,,顺次连接即可.
(2)分别求出,,的对应点,,顺次连接即可.
(3)利用旋转对称图形得出对应点的连线的交点进而得出答案..
【详解】
解:(1)如图所示,△即为所求.
(2)如图所示,△即为所求.
(3).
理由如下:∵△A1B1C1与△A2B2C2关于P点成中心对称,
∴P点是B1B2的中点,
又∵B1B2的坐标为(4,2)、(-6,2),
∴P坐标为(-1,2).
本题考查作图旋转变换,平移变换等知识,根据题意得出对应点坐标是解题关键.
15、(1)y=,y=x+2;(2)-1<x<0或x>1;(1)3;(3)P(0,- )或P(0,)或P(0,6)或P(0,).
【解析】
(1)利用待定系数法求得一次函数与反比例函数的解析式;
(2)根据图象,当自变量取相同的值时,函数图象对应的点在上边的函数值大,据此即可确定;
(1)设一次函数交y轴于D,根据S△ABO=S△DBO+S△DAO即可求解;
(3)求得OA的长度,分O是顶角的顶点,和A是顶角顶点,以及OA是底边三种情况进行讨论即可求解.
【详解】
解:(1)∵A(1,1)在反比例函数图象上,∴k=1,
∵B(n,-1)在y=的图象上,
∴n=-1.
∵A(1,1),B(-1,-1)在一次函数y=mx+b图象上,
∴,
解得m=1,b=2.
∴两函数关系式分别是:y=和y=x+2.
(2)由图象得:当-1<x<0或x>1时,一次函数的值大于反比例函数的值;
(1)设一次函数y=x+2交y轴于D,则D(0,2),则OD=2,
∵A(1,1),B(-1,-1)
∴S△DBO=×1×2=1,S△DAO=×1×2=1
∴S△ABO=S△DBO+S△DAO=3.
(3)OA= = ,
O是△AOP顶角的顶点时,OP=OA,则P(0,- )或P(0,),
A是△AOP顶角的顶点时,由图象得, P(0,6),
OA是底边,P是△AOP顶角的顶点时,
设 P(0,x),分别过A、P作AN⊥x轴于N,PM⊥AN于M,
则AP=OP=x,PM=1,AM=1-x,
在Rt△APM中, 即
解得x= ,
∴P(0,).
故答案为:(1)y=,y=x+2;(2)-1<x<0或x>1;(1)3;(3)P(0,- )或P(0,)或P(0,6)或P(0,).
本题考查反比例函数与一次函数的交点问题,待定系数法求函数解析式,用待定系数法确定函数的解析式,是常用的一种解题方法.同时在求解面积时,要巧妙地利用分割法,将面积分解为两部分之和.
16、(1)y=﹣x+4;(2)1.
【解析】
(1)设直线l2的解析式为y=kx+b,已知点B、C的坐标,利用待定系数法求直线l2的解析式即可;(2)先求出点D、点A的坐标,从而求得OD、OA的长,再利用四边形OACD的面积=S△ODC+S△AOC即可求得四边形OACD的面积.
【详解】
(1)设直线l2的解析式为y=kx+b,
∵点C(2,2)、B(3,1)在直线l2上,
∴,
解得, ,
∴直线l2的解析式为y=﹣x+4;
(2)∵点D是直线l1:y=2x﹣2与x轴的交点,
∴y=0,0=2x﹣2,x=1,
∴D(1,0),
∴OD=1,
∵点A是直线l2与x轴的交点,
∴y=0,
即0=﹣x+4,
解得x=4,
即点A(4,0),
∴OA=3,
连接OC,
∴四边形OACD的面积=S△ODC+S△AOC=×4×2+×1×2=1.
本题考查了待定系数法求函数的解析式及求四边形的面积,正确求得直线l2的解析式是解决问题关键.
17、 (1)见解析;(2)见解析;菱形ABEF的面积为8.
【解析】
(1)由图可知A、B间的垂直方向长为3,要使平行四边形的面积为15,结合网格特点则可以在B的水平方向上取一条长为5的线段,可得点C,据此可得平行四边形;
(2)根据网格特点,菱形性质画图,然后利用菱形所在正方形的面积减去三角形的面积以及小正方形的面积即可求得面积.
【详解】
(1)如图1所示,平行四边形ABCD即为所求;
(2)如图2所示,菱形ABCD为所求,
菱形ABCD的面积=4×4-4××3×1-2×1×1=16-6-2=8.
本题考查了作图——应用与设计,涉及了平行四边形的性质,菱形的性质等,正确把握相关图形的性质以及网格的结构特点是解题的关键.
18、.
【解析】
过点A作AF⊥BC于F,先利用等腰直角三角形的性质求出BC=4,BF=AF=CF=2,再利用勾股定理求出DF,即可得出结论.
【详解】
如图,过点A作AF⊥BC于F,
在Rt△ABC中,∠B=45°,
∴△ABC是等腰直角三角形,
∴BC=AB=4,BF=AF=CF=BC=2,
∵两个同样大小的含45°角的三角尺,
∴AD=BC=4,
在Rt△ADF中,根据勾股定理得,DF=,
∴CD=DF-CF=,
故答案为:.
此题主要考查了勾股定理,等腰直角三角形的判定与性质,全等三角形的性质,正确作出辅助线是解本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
根据直角三角形的性质求出AB,根据三角形中位线定理计算即可.
【详解】
解:∵∠BCA=90°,D是AB的中点,
∴AB=2CD=12cm,
∵E、F分别是AC、BC的中点,
∴EF=AB=1cm,
故答案为1.
本题考查的是直角三角形的性质、三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
20、﹣1<m<1
【解析】
试题分析:让点P的横坐标小于0,纵坐标大于0列式求值即可.
解:∵点P(m﹣1,m+1)在第二象限,
∴m﹣1<0,m+1>0,
解得:﹣1<m<1.故填:﹣1<m<1.
【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).
21、
【解析】
根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为2,可得答案.
【详解】
由y=是一次函数,得
m2-24=2且m-2≠0,
解得m=-2,
故答案为:-2.
本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为2.
22、.
【解析】
先求得A1(0,1),OA1=1,然后根据正方形的性质求出C1(1,0),B1(1,1),同样的方法求出C2(3,0),B2(3,2),C3(7,0),B3(7,4),……,从而有Cn(2n-1,0),Bm(2n-1,2n-1),由此即可求得答案.
【详解】
当x=0时,y=x+1=1,
∴A1(0,1),OA1=1,
∵正方形A1B1C1O,
∴A1B1=B1C1=OC1=OA1=1,
∴C1(1,0),B1(1,1),
当x=1时,y=x+1=2,
∴A2(1,2),C1A2=2,
∵正方形A2B2C2C1,
∴A2B2=B2C2=C1C2=C1A1=2,
∴C2(3,0),B2(3,2),
当x=3时,y=x+1=4,
∴A3(3,4),C2A3=4,
∵正方形A3B3C3C2,
∴A3B3=B3C3=C2C3=C2A3=4,
∴C3(7,0),B3(7,4),
……
∴Cn(2n-1,0),Bm(2n-1,2n-1),
∴B2019(22019-1,22018),
故答案为(22019-1,22018).
本题考查一次函数图象上点的坐标特征、正方形的性质,解题的关键是明确题意,找出各个点之间的关系,利用数形结合的思想解答问题.
23、5+3x>240
【解析】
因为树栽种时的树围为5cm,以后树围每年增长约3cm,x年后树围将达到(5+3x)cm.
不等关系:x年其树围才能超过2.4m.
【详解】
根据题意,得5+3x>240.
故答案为:5+3x>240.
本题主要考查由实际问题抽象出一元一次不等式,抓住关键词语,弄清不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.
二、解答题(本大题共3个小题,共30分)
24、(1)证明见解析;(2)证明见解析
【解析】
(1)由已知可得:EF是△ABC的中位线,则可得EF∥AB,EF=AB,又由DF=EF,易得AB=DE,根据有一组对边平行且相等的四边形是平行四边形,即可证得四边形ABED是平行四边形;
(2)由(1)可得四边形AECD是平行四边形,又由AB=AC,AB=DE,易得AC=DE,根据对角线相等的平行四边形是矩形,可得四边形AECD是矩形.
【详解】
解:(1)∵E、F分别为△ABC的边BC、CA的中点,
∴EF∥AB,EF=AB,
∵DF=EF,
∴EF=DE,
∴AB=DE,
∴四边形ABED是平行四边形;
(2)∵DF=EF,AF=CF,
∴四边形AECD是平行四边形,
∵AB=AC,AB=DE,
∴AC=DE,
∴四边形AECD是矩形.
或∵DF=EF,AF=CF,
∴四边形AECD是平行四边形,
∵AB=AC,BE=EC,
∴∠AEC=90°,
∴四边形AECD是矩形.
本题考查矩形的判定及平行四边形的判定,掌握判定方法正确推理论证是解题关键.
25、(1)城与台风中心之间的最小距离是;(2)城遭受这次台风影响的时间为小时.
【解析】
(1)城与台风中心之间的最小距离即为点A到OB的垂线段的长,作,根据直角三角形中所对的直角边等于斜边的一半求解即可;
(2)设上点,千米,则还有一点,有千米,则在DG范围内,城遭受这次台风影响,所以求出DG长,除以台风移动的速度即为时间.
【详解】
解:作
在中,
,则
答:城与台风中心之间的最小距离是
设上点,千米,则还有一点,有
千米
是等腰三角形,
是的垂直平分线,
在中,千米,千米
由勾股定理得,(千米)
千米,遭受台风影响的时间是:(小时)
答:城遭受这次台风影响个时间为小时
本题考查了含直角三角形的性质、等腰三角形的性质及勾股定理,正确理解题意是解题的关键.
26、(1);(2),.
【解析】
(1)直接利用二次根式的混合运算法则计算得出答案;
(2)直接利用分解因式法解方程即可.
【详解】
(1)原式
(2)
,
,,
∴,.
此题主要考查了因式分解法解方程以及二次根式的混合运算,正确分解因式是解题关键.
题号
一
二
三
四
五
总分
得分
广东省横沥中学2024-2025学年数学九年级第一学期开学经典试题【含答案】: 这是一份广东省横沥中学2024-2025学年数学九年级第一学期开学经典试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
大理市重点中学2024-2025学年九年级数学第一学期开学预测试题【含答案】: 这是一份大理市重点中学2024-2025学年九年级数学第一学期开学预测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年广东省湛江市霞山职业高级中学数学九年级第一学期开学达标检测模拟试题【含答案】: 这是一份2024-2025学年广东省湛江市霞山职业高级中学数学九年级第一学期开学达标检测模拟试题【含答案】,共24页。试卷主要包含了选择题,第四象限,解答题等内容,欢迎下载使用。