广东省深圳市平湖中学2024-2025学年九上数学开学质量检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12,AB=10,则AE的长为( )
A.13B.14C.15D.16
2、(4分)函数y=中,自变量的取值范围是( ).
A.B.C.且D.
3、(4分)若,则的值用、可以表示为 ( )
A.B.C.D.
4、(4分)下列计算中正确的是( )
A.B.C.D.
5、(4分)在△ABC中,∠C=90°,若AB=5,则AB2+AC2+BC2=( )
A.10B.15C.30D.50
6、(4分)已知关于的方程是一元二次方程,则的取值范围是( )
A.B.C.D.任意实数
7、(4分)五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是( )
A.2、40 B.42、38 C.40、42 D.42、40
8、(4分)如图,在中,对角线,交于点.若,,,则的周长为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=_____.
10、(4分)我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的就用了这种分割方法,若BD=2,AE=3,则正方形ODCE的边长等于________.
11、(4分)关于 x 的方程 (a≠0)的解 x=4,则的值为__.
12、(4分)如图,有一块长32米,宽24米的草坪,其中有两条宽2米的直道把草坪分为四块,则草坪的面积是_____平方米.
13、(4分)关于的一元二次方程有两个不相等的实数根,则的取值范围是_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)师徒两人分别加工1200个零件,已知师傅每天加工零件的个数是徒弟每天加工零件个数的1.5倍,结果师傅比徒弟少用10天完成,求徒弟每天加工多少个零件?
15、(8分)如图,已知菱形的对角线相交于点,延长至点,使,连结.
求证:.
当时,四边形为菱形吗?请说明理由.
16、(8分)为了响应国家节能减排的号召,鼓励市民节约用电,我市从2012年7月1日起,居民用电实行“一户一表”的“阶梯电价”,分三个档次收费,第一档是用电量不超过180千瓦时实行“基本电价”,第二、三档实行“提高电价”,具体收费情况如图的折线图,请根据图象回答下列问题;
(1)当用电量是180千瓦时时,电费是__________元;
(2)第二档的用电量范围是__________;
(3)“基本电价”是__________元/千瓦时;
(4)小明家8月份的电费是1.5元,这个月他家用电多少千瓦时?
17、(10分)解一元二次方程:.
18、(10分)已知:如图,在中,。
(1)尺规作图:作线段的垂直平分线交于点,垂足为点,连接;(保留作图痕迹,不写作法);
(2)求证:是等腰三角形。
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)使分式 有意义的x的范围是 ________ 。
20、(4分)已知y轴上的点P到原点的距离为7,则点P的坐标为_____.
21、(4分)分解因式:= .
22、(4分)如图,一次函数y=ax+b的图象经过A(2,0)、B(0,﹣1)两点,则关于x的不等式ax+b<0的解集是_____.
23、(4分)已知菱形的边长为6cm,一个内角为60°,则菱形的面积为______cm1.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,一次函数的图象与轴交于点,与轴交于点,过的中点的直线交轴于点.
(1)求,两点的坐标及直线的函数表达式;
(2)若坐标平面内的点,能使以点,,,为顶点的四边形为平行四边形,请直接写出满足条件的点的坐标.
25、(10分)如图,请在下列四个论断中选出两个作为条件,推出四边形ABCD是平行四边形,并予以证明(写出一种即可).
①AD∥BC;②AB=CD;③∠A=∠C;④∠B+∠C=180°.
已知:在四边形ABCD中,____________.
求证:四边形ABCD是平行四边形.
26、(12分)因式分解
(1)a4-16a2 (2)4x2+8x+4
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
先证明四边形ABEF是平行四边形,再证明邻边相等即可得出四边形ABEF是菱形,得出AE⊥BF,OA=OE,OB=OF=BF=6,由勾股定理求出OA,即可得出AE的长.
【详解】
如图所示:
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠DAE=∠AEB,
∵∠BAD的平分线交BC于点E,
∴∠DAE=∠BAE,
∴∠BAE=∠BEA,
∴AB=BE,同理可得AB=AF,
∴AF=BE,
∴四边形ABEF是平行四边形,
∵AB=AF,
∴四边形ABEF是菱形,
∴AE⊥BF,OA=OE,OB=OF=BF=6,
∴OA==8,
∴AE=2OA=16.
故选D.
本题考查平行四边形的性质与判定、等腰三角形的判定、菱形的判定和性质、勾股定理等知识;熟练掌握平行四边形的性质,证明四边形ABEF是菱形是解决问题的关键.
2、D
【解析】
解:根据题意得x-2≠0,
解得x≠2.
故选D.
3、C
【解析】
根据化简即可.
【详解】
=.
故选C.
此题的关键是把写成的形式.
4、D
【解析】
分析:根据二次根式的加减法则对各选项进行逐一计算即可.
详解:A、与不是同类项,不能合并,故本选项错误;
B、与不是同类项,不能合并,故本选项错误;
C、3与不是同类项,不能合并,故本选项错误;
D、=,故本选项正确.
故选:D.
点睛:本题考查的是二次根式的加减法,在进行二次根式的加减运算时要把各二次根式化为最简二次根式,再合并同类项即可.
5、D
【解析】
试题分析:根据题意可知AB为斜边,因此可根据勾股定理可知=25,因此可知=25×2=50.
故选D.
点睛:此题主要考查了勾股定理的应用,解题关键是根据勾股定理列出直角三角形三边关系的式子,然后化简代换即可.
6、A
【解析】
利用一元二次方程的定义求解即可.
【详解】
解:∵关于x的方程是一元二次方程,
∴m+1≠0,即m≠−1,
故选:A.
此题主要考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.
7、D
【解析】【分析】根据众数和中位数的定义分别进行求解即可得.
【详解】这组数据中42出现了两次,出现次数最多,所以这组数据的众数是42,
将这组数据从小到大排序为:37,38,40,42,42,所以这组数据的中位数为40,
故选D.
【点睛】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数.将一组数据从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.
8、B
【解析】
根据平行四边形的性质进行计算即可.
【详解】
解:在中,BO=BD=, CO=AC=2,
∴的周长为:B0+CO+BC=+2+3=7.5
故答案选:B
本题考查平行四边形的性质,熟练掌握平行四边形的性质和计算法则是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可.
【详解】∵关于x的一元二次方程mx1+5x+m1﹣1m=0有一个根为0,
∴m1﹣1m=0且m≠0,
解得,m=1,
故答案是:1.
【点睛】本题考查了一元二次方程ax1+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.
10、1
【解析】
设正方形ODCE的边长为x,则CD=CE=x,根据全等三角形的性质得到AF=AE,BF=BD,根据勾股定理即可得到结论.
【详解】
解:设正方形ODCE的边长为x,
则CD=CE=x,
∵△AFO≌△AEO,△BDO≌△BFO,
∴AF=AE,BF=BD,
∴AB=2+3=5,
∵AC2+BC2=AB2,
∴(3+x)2+(2+x)2=52,
∴x=1,
∴正方形ODCE的边长等于1,
故答案为:1.
本题考查了勾股定理的证明,全等三角形的性质,正方形的性质,熟练掌握勾股定理是解题的关键.
11、4
【解析】
将x=4代入已知方程求得b =4a,然后将其代入所以的代数式求值.
【详解】
∵关于x的方程 (a≠0)的解x=4,
∴,
∴b=4a,
∴= ,
故答案是:4.
此题考查分式方程的解,分式的化简求值,解题关键在于求得b =4a
12、1.
【解析】
草坪的面积等于矩形的面积-两条路的面积+两条路重合部分的面积,由此计算即可.
【详解】
解:S=32×24-2×24-2×32+2×2=1(m2).
故答案为:1.
本题考查了生活中的平移现象,解答本题的关键是求出草坪总面积的表达式.
13、q<1
【解析】
解:∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△=82﹣4q=64﹣4q>0,解得:q<1.故答案为q<1.
点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、徒弟每天加工40个零件.
【解析】
设徒弟每天加工x个零件,根据工作时间=工作总量÷工作效率,结合师傅比徒弟少用10天完成,即可得出关于x的分式方程.
【详解】
解:设徒弟每天加工个零件,则师傅每天加工个零件.
由题意得:,
解得,
经检验:是原方程的解.
答:徒弟每天加工40个零件.
本题考查了分式方程的应用.找到关键描述语,找到合适的等量关系是解决问题的关键.
15、(1)详见解析;(2)详见解析.
【解析】
(1)根据菱形的四条边的对边平行且相等可得AB=CD,AB∥CD,再求出四边形BECD是平行四边形,然后根据平行四边形的对边相等证明即可;
(2)只要证明DC=DB,即证明△DCB是等边三角形即可解决问题;
【详解】
证明:四边形是菱形,
∴,,
又∵,
∴,,
∴四边形 是平行四边形,
∴;
解:结论:四边形是菱形.
理由:∵四边形是菱形,
∴,∵,
∴,是等边三角形,
∴,
∵四边形是平行四边形,
∴四边形是菱形.
考查了菱形的性质和判定,平行四边形的性质和判定,平行线的性质,熟记各图形的性质并准确识图是解题的关键.
16、(1)128;
(2)182<x≤442;
(3)2.6;
(4)这个月他家用电422千瓦时.
【解析】
试题分析:(1)通过函数图象可以直接得出用电量为182千瓦时,电费的数量;
(2)从函数图象可以看出第二档的用电范围;
(3)运用总费用÷总电量就可以求出基本电价;
(4)结合函数图象可以得出小明家8月份的用电量超过442千瓦时,先求出直线BC的解析式就可以得出结论.
解:(1)由函数图象,得
当用电量为182千瓦时,电费为:128元.
故答案为128;
(2)由函数图象,得
设第二档的用电量为x千瓦时,则182<x≤442.
故答案为182<x≤442;
(3)基本电价是:128÷182=2.6;
故答案为2.6
(4)设直线BC的解析式为y=kx+b,由图象,得
,
解得:,
y=2.9x﹣121.4.
y=1.4时,
x=422.
答:这个月他家用电422千瓦时.
17、,
【解析】
利用公式法求解即可.
【详解】
解:a=2,b=-5,c=1,
∴
∴
∴,
本题考查了解一元二次方程-因式分解法,配方法,以及公式法,熟练掌握各种解法是解题的关键.
18、(1)见解析;(2)是等腰三角形,见解析.
【解析】
(1)根据垂直平分线的作法作出AB的垂直平分线交BC于点D,垂足为F,再连接AD即可求解;
(2)根据等腰三角形的性质和线段垂直平分线的性质得到∠1=∠C=∠B=36°,再根据三角形内角和定理和三角形外角的性质得到∠DAC=∠ADC,再根据等腰三角形的判定即可求解.
【详解】
解:(1)如图,作出的垂直平分线,
连接,
(2)∵,
∴,
∴,
∵是的垂直平分线,∴,
∴,
∴,
∴,
∴,
∴是等腰三角形.
本题考查了作图-复杂作图,涉及的知识点有:垂直平分线的作法,等腰三角形的性质,线段垂直平分线的性质得,三角形内角和定理,三角形外角的性质以及等腰三角形的判定等.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x≠1
【解析】
根据分式有意义的条件可求解.
【详解】
分母不为零,即x-1≠0,x≠1.
故答案是:x≠1.
考查了分式有意义的条件,(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.
20、(0,7)或(0,-7)
【解析】
点P在y轴上,分两种情况:正方向和负方向,即可得出点P的坐标为(0,7)或(0,-7).
【详解】
∵点P在y轴上,分两种情况:正方向和负方向,点P到原点的距离为7
∴点P的坐标为(0,7)或(0,-7).
此题主要考查平面直角坐标系中点的坐标,只告知点到原点的距离,要分两种情况,不要遗漏.
21、
【解析】
试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式。因此,
先提取公因式后继续应用平方差公式分解即可:。
22、x<1.
【解析】
根据一次函数与一元一次不等式的关系即可直接得出答案.
【详解】
由一次函数y=ax+b的图象经过A(1,0)、B(0,﹣1)两点,
根据图象可知:x的不等式ax+b<0的解集是x<1,
故答案为:x<1.
本题主要考查一次函数和一元一次不等式的知识点,解答本题的关键是进行数形结合,此题比较简单.
23、18
【解析】
由题意可知菱形的较短的对角线与菱形的一组边组成一个等边三角形,根据勾股定理可求得另一条对角线的长,再根据菱形的面积等于两对角线乘积的一半即可求得其面积.
解:因为菱形的一个内角是110°,则相邻的内角为60°从而得到较短的对角线与菱形的一组邻边构成一个等边三角形,
即较短的对角线为6cm,根据勾股定理可求得较长的对角线的长为6cm,
则这个菱形的面积=×6×6=18cm1,
故答案为18.
二、解答题(本大题共3个小题,共30分)
24、(1),,;(2)点的坐标为或或.
【解析】
(1)先根据一次函数求出A,B坐标,然后得到中点D的坐标,利用待定系数法求出直线CD的解析式即可求解;
(2)根据题意分3种情况,利用坐标平移的性质即可求解.
【详解】
解:(1)一次函数,令,则;
令,则,∴,,
∵是的中点,
∴,
设直线的函数表达式为,则
解得
∴直线的函数表达式为.
(2)①若四边形BCDF是平行四边形,则DF∥CB,DF=CB,
而点C向右平移6个单位长度得到点B,
∴点D向右平移6个单位长度得到点F(8,2);
②若四边形BCFD是平行四边形,则DF∥CB,DF=CB,
而点B向左平移6个单位长度得到点C,
∴点D向左平移6个单位长度得到点F(-4,2);
③若四边形BDCF是平行四边形,则BF∥DC,BF=DC,
而点D向左平移4个单位长度、向下平移2个单位长度得到点C,
∴点B向左平移4个单位长度、向下平移2个单位长度得到点F(0,-2);
综上,点的坐标为或或.
此题主要考查一次函数与几何综合,解题的关键是熟知待定系数法的运用及平行四边形的性质.
25、已知:①③(或①④或②④或③④),证明见解析.
【解析】
试题分析:根据平行四边形的判定方法就可以组合出不同的结论,然后即可证明.
其中解法一是证明两组对角相等的四边形是平行四边形;
解法二是证明两组对边平行的四边形是平行四边形;
解法三是证明一组对边平行且相等的四边形是平行四边形;
解法四是证明两组对角相等的四边形是平行四边形.
试题解析:已知:①③,①④,②④,③④均可,其余均不可以.
解法一:
已知:在四边形ABCD中,①AD∥BC,③∠A=∠C,
求证:四边形ABCD是平行四边形.
证明:∵AD∥BC,
∴∠A+∠B=180°,∠C+∠D=180°.
∵∠A=∠C,
∴∠B=∠D.
∴四边形ABCD是平行四边形.
解法二:
已知:在四边形ABCD中,①AD∥BC,④∠B+∠C=180°,
求证:四边形ABCD是平行四边形.
证明:∵∠B+∠C=180°,
∴AB∥CD,
又∵AD∥BC,
∴四边形ABCD是平行四边形;
解法三:
已知:在四边形ABCD中,②AB=CD,④∠B+∠C=180°,
求证:四边形ABCD是平行四边形.
证明:∵∠B+∠C=180°,
∴AB∥CD,
又∵AB=CD,
∴四边形ABCD是平行四边形;
解法四:
已知:在四边形ABCD中,③∠A=∠C,④∠B+∠C=180°,
求证:四边形ABCD是平行四边形.
证明:∵∠B+∠C=180°,
∴AB∥CD,
∴∠A+∠D=180°,
又∵∠A=∠C,
∴∠B=∠D,
∴四边形ABCD是平行四边形.
考点:平行四边形的判定.
26、 (1) a2(a+4)(a-4);(2) 4(x+1)2
【解析】
(1)先提取公因式a2,再对余下的多项式利用平方差公式继续分解;
(2)先提取公因式4,再对余下的多项式利用完全平方公式继续分解.
【详解】
(1)a4-16a2,
=a2(a2-16),
=a2(a+4)(a-4);
(2)4x2+8x+4
=4(x2+2x+1)
=4(x+1)2.
考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
题号
一
二
三
四
五
总分
得分
批阅人
广东省深圳市龙岗区龙岗街道新梓学校2024-2025学年数学九上开学质量检测试题【含答案】: 这是一份广东省深圳市龙岗区龙岗街道新梓学校2024-2025学年数学九上开学质量检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
广东省深圳市海韵中学2024-2025学年九上数学开学复习检测模拟试题【含答案】: 这是一份广东省深圳市海韵中学2024-2025学年九上数学开学复习检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
广东省潮州市2024-2025学年九上数学开学质量检测模拟试题【含答案】: 这是一份广东省潮州市2024-2025学年九上数学开学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。