广东省深圳市龙岗区龙岗街道新梓学校2024-2025学年数学九上开学质量检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)为了了解某市参加中考的25000名学生的视力情况,抽查了2000名学生的视力进行统计分析,下面四个判断正确的是( )
A.2000名学生的视力是总体的一个样本B.25000名学生是总体
C.每名学生是总体的一个个体D.样本容量是2000名
2、(4分)下列数据特征量:平均数、中位数、众数、方差之中,反映集中趋势的量有( )个.
A.B.C.D.
3、(4分)如图,,下列条件中不能使的是( )
A.B.C.D.
4、(4分)下列各式中是分式方程的是( )
A.B.C.D.
5、(4分)如图,函数的图象与轴、轴分别交于点、,则的面积为( )
A.B.C.D.9
6、(4分)将抛物线 y=x2向右平移 2 个单位长度,再向上平移 3 个单位长度后,得到的抛物线的解析式为( )
A.y=(x﹣2)2+3B.y=(x﹣2)2﹣3
C.y=(x+2)2+3D.y=(x+2)2﹣3
7、(4分)一个多边形的每一个内角都是 ,这个多边形是( )
A.四边形B.五边形C.六边形D.八边形
8、(4分)函数y=的自变量x的取值范围是( )
A.x≥0且x≠2B.x≥0C.x≠2D.x>2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在中,,D是AB的中点,若,则的度数为________。
10、(4分)在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是_____.
11、(4分)若一组数据1,3,x,4,5,6的平均数是4,则这组数据的众数是_____.
12、(4分)若菱形的周长为14 cm,一个内角为60°,则菱形的面积为_____cm1.
13、(4分)如图,一块矩形的土地被分成4小块,用来种植4种不同的花卉,其中3块面积分别是,,,则第四块土地的面积是____.
三、解答题(本大题共5个小题,共48分)
14、(12分)(1)|﹣3|+2sin45°﹣+(﹣)﹣1
(2)()÷
15、(8分)不解方程组,求的值
16、(8分) (1)先化简,再求值:,其中
(2)解方程:
17、(10分)已知:直线l:y=2kx﹣4k+3(k≠0)恒过某一定点P.
(1)求该定点P的坐标;
(2)已知点A、B坐标分别为(0,1)、(2,1),若直线l与线段AB相交,求k的取值范围;
(3)在0≤x≤2范围内,任取3个自变量x1,x2、x3,它们对应的函数值分别为y1、y2、y3,若以y1、y2、y3为长度的3条线段能围成三角形,求k的取值范围.
18、(10分)已知二次函数(,为常数).
(1)当,时,求二次函数的最小值;
(2)当时,若在函数值的情况下,只有一个自变量的值与其对应,求此时二次函数的解析式;
(3)当时,若在自变量的值满足≤≤的情况下,与其对应的函数值的最小值为21,求此时二次函数的解析式.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)本市5月份某一周毎天的最高气温统计如下表:则这组数据的众数是___.
20、(4分)若干桶方便面摆放在桌子上.实物图片左边所给的是它的三视图.则这一堆方便面共有 桶.
21、(4分)若是一元二次方程的一个根,则根的判别式与平方式的大小比较_____(填>,<或=).
22、(4分)如图,在中,, 分别是的中点,且,延长到点,使,连接,若四边形是菱形,则______
23、(4分)中华文化源远流长,如图是中国古代文化符号的太极图,圆中的黑色部分和白色部分关于圆心中心对称.在圆内随机取一点,则此点取黑色部分的概率是__.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知:矩形ABCD中,AB=10,AD=8,点E是BC边上一个动点,将△ABE沿AE折叠得到△AB′E。
(1)如图(1),点G和点H分别是AD和AB′的中点,若点B′在边DC上。
①求GH的长;
②求证:△AGH≌△B′CE;
(2)如图(2),若点F是AE的中点,连接B′F,B′F∥AD,交DC于I。
①求证:四边形BEB′F是菱形;
②求B′F的长。
25、(10分)某工厂车间为了了解工人日均生产能力的情况,随机抽取10名工人进行测试,将获得数据制成如下统计图.
(1)求这10名工人的日均生产件数的平均数、众数、中位数;
(2)若日均生产件数不低于12件为优秀等级,该工厂车间共有工人120人,估计日均生产能力为“优秀”等级的工人约为多少人?
26、(12分)在三个整式x2+2xy,y2+2xy,x2中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据相关概念(总体:所要考察对象的全体;个体:总体的每一个考察对象叫个体;样本:抽取的部分个体叫做一个样本;样本容量:样本中个体的数目)进行分析.
【详解】
根据题意可得:
2000名学生的视力情况是总体,
2000名学生的视力是样本,
2000是样本容量,
每个学生的视力是总体的一个个体.
故选A.
考查了总体、个体、样本、样本容量.解题关键是理解相差概念(总体:所要考察对象的全体;个体:总体的每一个考察对象叫个体;样本:抽取的部分个体叫做一个样本;样本容量:样本中个体的数目).
2、B
【解析】
根据平均数、中位数、众数、方差的性质判断即可.
【详解】
数据的平均数、众数、中位数是描述一组数据集中趋势的特征量,方差是衡量一组数据偏离其平均数的大小(即波动大小)的特征数.
故选B.
本题考查的是平均数、中位数、众数、方差,掌握它们的性质是解题的关键.
3、D
【解析】
根据条件和图形可得∠1=∠2,AD=AD,再根据全等三角形的判定定理分别添加四个选项所给条件进行分析即可.
【详解】
解:根据条件和图形可得∠1=∠2,AD=AD,
A、添加可利用SAS定理判定,故此选项不合题意;
B、添加可利用AAS定理判定,故此选项不合题意;
C、添加 可利用ASA定理判定△ABD≌△ACD,故此选项不合题意;
D、添加不能判定,故此选项符合题意;
故选:D .
本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
4、D
【解析】
根据分式方程的定义,即可得出答案.
【详解】
A不是方程,故此选项错误;B是方程,但不是分式方程,故此选项错误;C是一元一次方程,不是分式方程,故此选项错误;D是分式方程,故答案选择D.
本题考查的是分式方程的定义,分式方程的定义:①形如的式子;②其中A,B均为整式,且B中含有字母.
5、C
【解析】
根据函数的图象与轴、轴分别交于点、,求出A,B两点的坐标即可求解.
【详解】
∵函数的图象与轴、轴分别交于点、,
∴A(,0),(0,3)
∴的面积=OA×OB=××3=
故选C.
本题考查的是一次函数,熟练掌握一次函数的图像是解题的关键.
6、A
【解析】
直接根据平移规律,即可得到答案.
【详解】
解:将抛物线y=x2向右平移 2 个单位长度,再向上平移 3 个单位长度,
得:y=(x﹣2)2+3;
故选项:A.
此题主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.
7、B
【解析】
根据多边形的内角和公式列式计算即可得解.
【详解】
解:设这个多边形是n边形,
由题意得,(n﹣2)•180°=108°•n,
解得n=5,
所以,这个多边形是五边形.
故选B.
本题考查了多边形的内角问题,熟记多边形的内角和公式是解题的关键.
8、A
【解析】
由被开方数大于等于0,分母不等于0可得x≥0且x−1≠0,即x≥0且x≠1.故选A.
【考点】本题考查函数自变量的取值范围.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、52
【解析】
根据直角三角形的性质得AD=CD,由等腰三角形性质结合三角形外角性质可得答案 .
【详解】
∵∠ACB=90°,D是AB上的中点,
∴CD=AD=BD,
∴∠DCA=∠A=26°,
∴∠BDC=2∠A=52°.
故答案为52 .
此题考查了直角三角的性质及三角形的外角性质,掌握直角三角形斜边中线等于斜边一半的性质是解题的关键 .
10、1.
【解析】
在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.
【详解】
由题意可得,=0.03,
解得,n=1,
故估计n大约是1,
故答案为1.
本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.
11、5
【解析】
根据题意可知这组数据的和是24,列方程即可求得x,然后求出众数.
【详解】
解:由题意可知,1+3+x+4+5+6=4×6,
解得:x=5,
所以这组数据的众数是5.
故答案为5.
此题考查了众数与平均数的知识.众数是这组数据中出现次数最多的数.
12、18
【解析】
根据已知可求得菱形的边长,再根据直角三角形的性质求得菱形的高,从而根据菱形的面积公式计算得到其面积
【详解】
解:菱形的周长为14 cm,则边长为6cm,可求得60°所对的高为×6=3cm,则菱形的面积为6×3=18cm1.
故答案为18.
此题主要考查菱形的面积公式:边长乘以高,综合利用菱形的性质和勾股定理
13、54
【解析】
由矩形的面积公式可得20m2,30m2的两个矩形的长度比为2:3,即可求第四块土地的面积.
【详解】
解:∵20m2,30m2的两个矩形是等宽的,
∴20m2,30m2的两个矩形的长度比为2:3,
∴第四块土地的面积==54m2,
故答案为:54
本题考查了矩形的性质,熟练运用矩形的面积公式是本题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)-1(2)
【解析】
(1)根据实数混合运算顺序和运算法则计算可得;
(2)先计算括号内分式的加法、除法转化为乘法,再约分即可得.
【详解】
解:(1)原式=3﹣+2×﹣2﹣2
=3﹣+﹣4
=﹣1;
(2)原式=,
=,
=.
本题主要考查分式的混合运算与实数的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.
15、6.
【解析】
应把所给式子进行因式分解,整理为与所给等式相关的式子,代入求值即可.
【详解】
原式=
∴原式=
本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.
16、 (1) , ;(2).
【解析】
(1)先进行除法运算,再通分进行化简,将 代入化简结果即可得到答案;
(2) 方程两边都乘以,再移项,系数化为1,检验根的正确性,得到答案.
【详解】
(1)
当时,原式
(2)解方程:
解:方程两边都乘以,得
解这个方程,得
检验:将代入原方程
左边=右边=1
∴原方程的根是
本题考查分式的化简和解分式方程,解题的关键是掌握分式的化简和解分式方程的方法.
17、(1)(2,3);(2);(3)﹣<k<0或0<k<
【解析】
(1)对题目中的函数解析式进行变形即可求得点P的坐标;
(2)根据题意可以得到相应的不等式组,从而可以求得k的取值范围;
(3)根据题意和三角形三边的关系,利用分类讨论的数学思想可以求得k的取值范围.
【详解】
解:(1)∵y=2kx﹣4k+3=2k(x﹣2)+3,
∴y=2kx﹣4k+3(k≠0)恒过某一定点P的坐标为(2,3),
即点P的坐标为(2,3);
(2)∵点A、B坐标分别为(0,1)、(2,1),直线l与线段AB相交,直线l:y=2kx﹣4k+3(k≠0)恒过某一定点P(2,3),
∴
解得,k;
(3)当k>0时,直线y=2kx﹣4k+3中,y随x的增大而增大,
∴当0≤x≤2时,﹣4k+3≤y≤3,
∵以y1、y2、y3为长度的3条线段能围成三角形,
∴,得k<,
∴0<k<;
当k<0时,直线y=2kx﹣4k+3中,y随x的增大而减小,
∴当0≤x≤2时,3≤y≤﹣4k+3,
∵以y1、y2、y3为长度的3条线段能围成三角形,
∴3+3>﹣4k+3,得k>﹣,
∴﹣<k<0,
由上可得,﹣<k<0或0<k<.
故答案为(1)(2,3);(2);(3)﹣<k<0或0<k<
本题考查一次函数图象与系数的关系、一次函数图象上点的坐标特征、三角形三边关系,解答本题的关键是明确题意,找出所求问题需要的条件,利用分类讨论的数学思想解答.
18、(1)二次函数取得最小值-1;(2)或;
(3)或.
【解析】
(1)当b=2,c=-3时,二次函数的解析式为,把这个解析式化为顶点式利用二次函数的性质即可求最小值.
(2)当c=5时,二次函数的解析式为,又因函数值y=1的情况下,只有一个自变量x的值与其对应,说明方程有两个相等的实数根,利用即可解得b值,从而求得函数解析式.
(3)当c=b2时,二次函数的解析式为,它的图象是开口向上,对称轴为的抛物线.分三种情况进行讨论,①对称轴位于b≤x≤b+3范围的左侧时,即<b;②对称轴位于b≤x≤b+3这个范围时,即b≤≤b+3;③对称轴位于b≤x≤b+3范围的右侧时,即>b+3,根据列出的不等式求得b的取值范围,再根据x的取值范围b≤x≤b+3、函数的增减性及对应的函数值y的最小值为21可列方程求b的值(不合题意的舍去),求得b的值代入也就求得了函数的表达式.
【详解】
解:(1)当b=2,c=-3时,二次函数的解析式为,即.
∴当x=-1时,二次函数取得最小值-1.
(2)当c=5时,二次函数的解析式为.
由题意得,方程有两个相等的实数根.
有,解得,
∴此时二次函数的解析式为或.
(3)当c=b2时,二次函数的解析式为.
它的图象是开口向上,对称轴为的抛物线.
①若<b时,即b>0,
在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y随x的增大而增大,
故当x=b时,为最小值.
∴,解得,(舍去).
②若b≤≤b+3,即-2≤b≤0,
当x=时,为最小值.
∴,解得(舍去),(舍去).
③若>b+3,即b<-2,
在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y随x的增大而减小,
故当x=b+3时,为最小值.
∴,即
解得(舍去),.
综上所述,或b=-1.
∴此时二次函数的解析式为或.
考点:二次函数的综合题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.
【解析】
根据众数的定义来判断即可,众数:一组数据中出现次数最多的数据叫做众数.
【详解】
解:数据1出现了3次,次数最多,所以这组数据的众数是1.
故答案为:1.
众数的定义是本题的考点,属于基础题型,熟练掌握众数的定义是解题的关键.
20、1
【解析】
从俯视图中可以看出最底层方便面的个数及摆放的形状,从主视图可以看出每一层方便面的层数和个数,从左视图可看出每一行方便面的层数和个数,从而算出总的个数.所以三摞方便面是桶数之和为:3+1+2=1.
21、=
【解析】
首先把(2ax0+b)2展开,然后把x0代入方程ax2+bx+c=0中得ax02+bx0=-c,再代入前面的展开式中即可得到△与M的关系.
【详解】
把x0代入方程ax2+bx+c=0中得ax02+bx0=-c,
∵(2ax0+b)2=4a2x02+4abx0+b2,
∴(2ax0+b)2=4a(ax02+bx0)+b2=-4ac+b2=△,
∴M=△.
故答案为=.
本题是一元二次方程的根与根的判别式的结合试题,既利用了方程的根的定义,也利用了完全平方公式,有一定的难度.
22、2或2;
【解析】
根据等面积法,首先计算AC边上的高,再设AD的长度,列方程可得x的值,进而计算AB.
【详解】
根据可得为等腰三角形
分别是的中点,且
四边形是菱形
所以可得 中AC边上的高为:
设AD为x,则CD=
所以
解得x= 或x=
故答案为2或2
本题只要考查菱形的性质,关键在于设合理的未知数求解方程.
23、
【解析】
根据中心对称图形的性质得到圆中的黑色部分和白色部分面积相等, 根据概率公式计算即可 .
【详解】
∵圆中的黑色部分和白色部分关于圆心中心对称,
∴圆中的黑色部分和白色部分面积相等,
∴在圆内随机取一点, 则此点取黑色部分的概率是,
故答案为.
考查的是概率公式、 中心对称图形, 掌握概率公式是解题的关键 .
二、解答题(本大题共3个小题,共30分)
24、(1)①3;②详见解析;(2)①详见解析;②
【解析】
(1)①由折叠的性质可得出AB=AB′,根据矩形的性质可得出∠ADB′=90°,在Rt△ADB′中,利用勾股定理即可得出B′D的长度,再根据中位线的性质即可得出结论;
②由点G为AD的中点可求出AG的长度,通过边与边的关系可得出B′C=4,由此得出B′C=AG,再通过角的计算得出∠AHG=B′EC,由此即可根据全等三角形的判定定理AAS证出△AGH≌△B′CE;
(2)①连接BF,由平行线的性质结合直角三角的中线的性质即可得知△B′EF为等边三角形,根据折叠的性质即可证出四边形BEB′F是菱形;
②由等边三角形和平行线的性质可得出∠BEF=∠B′EF=60°,再由AB=10利用特殊角的三角函数值即可得出结论.
【详解】
(1)①∵将△ABE沿AE折叠得到△AB′E
∴AB=AB′
∵四边形ABCD为矩形
∴∠ADB′=90°
在Rt△ADB′中,AD=8,AB′=10
∴B′D==6
∵点G和点H分别是AD和AB′的中点,∴GH为△ADB′的中位线
∴GH=DB′=3
②证明:∵GH为△ADB′的中位线
∵GH∥DC,AG=AD=4
∴∠AHG=∠AB′D
∵∠AB′E=∠ABE=90°
∴∠AB′D+∠CB′E=90°
又∵∠CB′E+∠B′EC=90°
∴∠AHG=B′EC
∵CD=AB=10,DB′=6
∴B′C=4=AG
在△AGH和△B′CE中
∴△AGH≌△B′CE(AAS).
(2)①证明:
∵将△ABE沿AE折叠得到△AB′E
∴BF=B′F,∠B′EF=∠BEF,BE=B′E
∵B′F∥AD,AD∥BC
∴B′F∥BC
∴∠B′FE=∠BEF=∠B′EF
∵∠AB′E=∠ABE=90°,点F为线段AE的中点
∴B′F=AE=FE
∴△B′EF为等边三角形
∴B′F=B′E
∵BF=B′F,BE=B′E
∴B′F=BF=BE=B′E
∴四边形BEB′F是菱形
②∵△B′EF为等边三角形
∴∠BEF=∠B′EF=60°
∴BE=AB•ct∠BEF=10×=
∵四边形BEB′F是菱形
∴B′F=BE=.
本题考查了折叠的性质、矩形的性质、中位线的性质、全等三角形的判定定理、等边三角形的判定及性质以及菱形的判定定理,解题的关键是:(1)①利用勾股定理求出DB'的长度;②利用全等三角形的判定定理AAS证出△AGH≌△B′CE;(2)①得出B′EF为等边三角形;③利用特殊角的三角函数值求出BE的长度.本题属于中档题,难度不大.但解题过程稍显繁琐,解决该题型题目时,根据图形的翻折找出相等的边角关系是关键.
25、(1)平均数为11,众数为13,中位数为12.(2)优秀等级的工人约为72人.
【解析】
(1)根据平均数加工零件总数总人数,中位数是将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数,如果数据的个数是偶数就是中间两个数的平均数,众数是指一组数中出现次数最多的数据,分别进行解答即可得出答案;
(2)用样本的平均数估计总体的平均数即可.
【详解】
(1)由统计图可得,
平均数为:(件),
出现了4次,出现的次数最多,
众数是件,
把这些数从小到大排列为:,,,,,,,,,,最中间的数是第5、6个数的平均数,
则中位数是(件);
(2)(人)
答:优秀等级的工人约为72人.
本题考查统计量的选择,平均数、中位数和众数,解题的关键是明确题意,找出所求问题需要的条件.
26、答案不唯一,具体见解析
【解析】
解:
或
或
或
题号
一
二
三
四
五
总分
得分
温度/℃
22
24
26
29
天数
2
1
3
1
2024-2025学年广东省深圳市龙岗区新梓学校九年级数学第一学期开学质量检测模拟试题【含答案】: 这是一份2024-2025学年广东省深圳市龙岗区新梓学校九年级数学第一学期开学质量检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年广东省深圳市龙岗区龙岗街道新梓学校九年级数学第一学期开学达标检测模拟试题【含答案】: 这是一份2024-2025学年广东省深圳市龙岗区龙岗街道新梓学校九年级数学第一学期开学达标检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
广东省深圳市龙岗区龙岗街道新梓学校2023-2024学年九上数学期末达标检测模拟试题含答案: 这是一份广东省深圳市龙岗区龙岗街道新梓学校2023-2024学年九上数学期末达标检测模拟试题含答案,共7页。试卷主要包含了对于二次函数,下列说法正确的是等内容,欢迎下载使用。