广东省深圳市龙岗实验中学2025届数学九年级第一学期开学学业水平测试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)小明在家中利用物理知识称量某个品牌纯牛奶的净含量,称得六盒纯牛奶的含量分别为:248mL,250mL,249mL,251mL,249mL,253mL,对于这组数据,下列说法正确的是( ).
A.平均数为251mLB.中位数为249mL
C.众数为250mLD.方差为
2、(4分)如下是一种电子记分牌呈现的数字图形,其中既是轴对称图形又是中心对称图形的是( )
A.B.C.D.
3、(4分)罗老师从家里出发,到一个公共阅报栏看了一会儿报后,然后回家.右图描述了罗老师离家的距离(米与时间(分之间的函数关系,根据图象,下列说法错误的是
A.罗老师离家的最远距离是400米
B.罗老师看报的时间为10分钟
C.罗老师回家的速度是40米分
D.罗老师共走了600米
4、(4分)在平面直角坐标系中,点(-1,2)在( )
A.第一象限B.第二象限C.第三象限D.第四象限
5、(4分)在平面直角坐标系中,点P(﹣3,4)关于y轴对称点的坐标为( )
A.(﹣3,4)B.(3,4)C.(3,﹣4)D.(﹣3,﹣4)
6、(4分)下表是我国近六年“两会”会期(单位:天)的统计结果:
则我国近六年“两会”会期(天)的众数和中位数分别是( )
A.13,11B.13,13C.13,14D.14,13.5
7、(4分)若代数式在实数范围内有意义,则实数的取值范围是( )
A.B.C.D.
8、(4分)菱形ABCD的对角线AC,BD相交于点O,AC=10,BD=24,则菱形ABCD的周长为( )
A.52B.48C.40D.20
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)把直线y=﹣x﹣3向上平移m个单位,与直线y=2x+4的交点在第二象限,则m的取值范围是_____.
10、(4分)如图,∠C=90°,∠ABC=75°,∠CBD=30°,若BC=3 cm,则AD=________cm.
11、(4分)为响应“低碳生活”的号召,李明决定每天骑自行车上学,有一天李明骑了1000米后,自行车发生了故障,修车耽误了5分钟,车修好后李明继续骑行,用了8分钟骑行了剩余的800米,到达学校(假设在骑车过程中匀速行驶).若设他从家开始去学校的时间为t(分钟),离家的路程为y(千米),则y与t(15<t≤23)的函数关系为________.
12、(4分)存在两个变量x与y,y是x的函数,该函数同时满足两个条件:①图象经过(1,1)点;②当x>0时,y随x的增大而减小,这个函数的解析式是 ▲ (写出一个即可).
13、(4分)一个矩形在直角坐标平面上的三个顶点的坐标分别是(﹣2,﹣1)、(3,﹣1)、(﹣2,3),那么第四个顶点的坐标是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)我市某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%、90%.
(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株?
(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?
(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.
15、(8分)(知识背景)
据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦就等于5,后人概括为“勾三、股四、弦五”.像3、4、5这样为三边长能构成直角三角形的三个正整数,称为勾股数.
(应用举例)
观察3,4,5;5,12,13;7,24,25;…
可以发现这些勾股数的勾都是奇数,且从3起就没有间断过,并且
勾为3时,股,弦;
勾为5时,股,弦;
请仿照上面两组样例,用发现的规律填空:
(1)如果勾为7,则股24= 弦25=
(2)如果勾用(,且为奇数)表示时,请用含有的式子表示股和弦,则股= ,弦= .
(解决问题)
观察4,3,5;6,8,10;8,15,17;…根据应用举例获得的经验进行填空:
(3)如果是符合同样规律的一组勾股数,(表示大于1的整数),则 , ,这就是古希腊的哲学家柏拉图提出的构造勾股数组的公式.
(4)请你利用柏拉图公式,补全下面两组勾股数(数据从小到大排列)第一组: 、24、 :第二组: 、 、1.
16、(8分)用适当的方法解下列方程
(1)
(2)
17、(10分)列方程或方程组解应用题:
为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克,已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)
18、(10分)已知:直线l:y=2kx﹣4k+3(k≠0)恒过某一定点P.
(1)求该定点P的坐标;
(2)已知点A、B坐标分别为(0,1)、(2,1),若直线l与线段AB相交,求k的取值范围;
(3)在0≤x≤2范围内,任取3个自变量x1,x2、x3,它们对应的函数值分别为y1、y2、y3,若以y1、y2、y3为长度的3条线段能围成三角形,求k的取值范围.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在□ABCD中,已知∠A=110°,则∠D=__________.
20、(4分)已知a+b=3,ab=﹣4,则a2b+ab2的值为_____.
21、(4分)为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表所示:
则这10双运动鞋尺码的众数和中位数分别为________________.
22、(4分)如图,已知∠AON=40°,OA=6,点P是射线ON上一动点,当△AOP为直角三角形时,∠A=_____°.
23、(4分)已知一次函数的图象如图,根据图中息请写出不等式的解集为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,直线AB:y=x+2与x轴、y轴分别交于A,B两点,C是第一象限内直线AB上一点,过点C作CD⊥x轴于点D,且CD的长为,P是x轴上的动点,N是直线AB上的动点.
(1)直接写出A,B两点的坐标;
(2)如图①,若点M的坐标为(0,),是否存在这样的P点.使以O,P,M,N为顶点的四边形是平行四边形?若有在,请求出P点坐标;若不存在,请说明理由.
(3)如图②,将直线AB绕点C逆时针旋转交y轴于点F,交x轴于点E,若旋转角即∠ACE=45°,求△BFC的面积.
25、(10分)《九章算术》卷九“勾股”中记载:今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐.问霞长几何.
注释:今有正方形水池边长1丈,芦苇生长在中央,长出水面1尺.将芦苇向池岸牵引,恰好与水岸齐,问芦苇的长度(一丈等于10尺).解决下列问题:
(1)示意图中,线段的长为______尺,线段的长为______尺;
(2)求芦苇的长度.
26、(12分)如图,在矩形中,对角线的垂直平分线与相交于点,与相交于点,连接,.求证:四边形是菱形;
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
试题分析:中位数是一组数据按大小顺序排列,中间一个数或两个数的平均数,即为中位数;出现次数最多的数即为众数;方差就是各变量值与其均值离差平方的平均数,根据方差公式计算即可,所以计算方差前要先算出平均数,然后再利用方差公式计算.A、这组数据平均数为:(248+250+249+251+249+253)÷6=250,故此选项错误;B、数据重新排列为:248,249,249,250,251,253,其中位数是(249+250)÷2=249.5,故此选项错误;C、这组数据出现次数最多的是249,则众数为249,故此选项错误;D、这组数据的平均数250,根据方差公式S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],则其方差为:×[(248﹣250)2+(250﹣250)2+(249﹣250)2+(251﹣250)2+(249﹣250)2+(253﹣250)2]=,故此选项正确;故选D.
考点:平均数、中位数、众数、方差的定义.
2、C
【解析】
根据轴对称和中心对称图形的概念可判别.
【详解】
(A)既不是轴对称也不是中心对称;
(B)是轴对称但不是中心对称;
(C)是轴对称和中心对称;
(D)是中心对称但不是轴对称
故选:C
3、D
【解析】
根据函数图象中的数据可以判断各个选项中的说法是否正确.
【详解】
解:由图象可得,
罗老师离家的最远距离是400米,故选项正确,
罗老师看报的时间为分钟,故选项正确,
罗老师回家的速度是米分,故选项正确,
罗老师共走了米,故选项错误,
故选:.
本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.
4、B
【解析】
根据各象限内点的坐标特征解答即可.
【详解】
∵点(-1,2)的横坐标为负数,纵坐标为正数,
∴点(-1,2)在第二象限.
故选B.
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
5、B
【解析】
根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.
【详解】
解:点P(﹣3,4)关于y轴对称点的坐标为(3,4).
故选:B.
本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:
(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;
(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;
(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
6、B
【解析】
众数是在一组数据中出现次数最多的数;中位数是把数据按照从小到大顺序排列之后,当项数为奇数时,中间的数为中位数;当项数为偶数时,中间两个数的平均数为中位数.由此即可解答.
【详解】
数据13出现了3次,次数最多,这组数据的众数为13;把这组数据按照从小到大顺序排列为11、13、13、13、14、18, 13处在第3位和第4位,它们的平均数为13,即这组数据的中位数是13.
故选B.
本题考查了众数及中位数的判定方法,熟知众数及中位数的定义是解决问题的关键.
7、B
【解析】
直接利用分式有意义的条件进而得出答案.
【详解】
∵代数式在实数范围内有意义,
∴a-1≠0,
∴a≠1.
故选B.
此题主要考查了分式有意义的条件,正确把握定义是解题关键.
8、A
【解析】
由勾股定理可得AB的长,继而得到菱形ABCD的周长.
【详解】
因为菱形ABCD中,AC=10,BD=24,所以OB=12,OA=5.在直角三角形ABO中,AB=,所以菱形ABCD的周长=4AB=52,故答案为A.
本题考查勾股定理和菱形的性质,解题的关键是掌握勾股定理和菱形的性质.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1<m<1.
【解析】
直线y=﹣x﹣3向上平移m个单位后可得:y=﹣x﹣3+m,求出直线y=﹣x﹣3+m与直线y=2x+4的交点,再由此点在第二象限可得出m的取值范围.
【详解】
解:直线y=﹣x﹣3向上平移m个单位后可得:y=﹣x﹣3+m,
联立两直线解析式得:,
解得:,
即交点坐标为(,),
∵交点在第二象限,
∴,
解得:1<m<1.
故答案为1<m<1.
本题考查一次函数图象与几何变换、两直线的交点坐标,注意第二象限的点的横坐标小于2、纵坐标大于2.
10、6+
【解析】
由已知条件可知:BD=2CD,根据三角函数可求出CD,作AB的垂直平分线,交AC于点E,在Rt△BCE中,根据三角函数可求出BE、CE,进而可将AD的长求出.
【详解】
解:作AB的垂直平分线,交AC于点E,
∴AE=BE,∵∠C=90°,∠ABC=75°,∠CBD=30°,∴2∠A=∠BED=30°,
∴tan30°==,
解得:CD=cm,
∵BC=3cm,∴BE=6cm,∴CE=3cm,
∴AD=AE+CE﹣CD=BE+CE﹣CD=(6+)cm.
11、y=100t-500(15<t≤23)
【解析】
分析:
由题意可知,李明骑车的速度为100米/分钟,由此可知他从家到学校共用去了23分钟,其中自行车出故障前行驶了10分钟,自行车修好后行驶了8分钟,由此可知当时,y与t的函数关系为:.
详解:
∵车修好后,李明用8分钟骑行了800米,且骑车过程是匀速行驶的,
∴李明整个上学过程中的骑车速度为:100米/分钟,
∴在自行车出故障前共用时:1000÷100=10(分钟),
∵修车用了5分钟,
∴当时,是指小明车修好后出发前往学校所用的时间,
∴由题意可得:(),
化简得:().
故答案为:().
点睛:“由题意得到李明骑车的速度为100米/分钟,求时,y与t间的函数关系是求自行车修好后到家的距离与行驶的时间间的函数关系”是解答本题的关键.
12、(答案不唯一).
【解析】
根据题意,函数可以是一次函数,反比例函数或二次函数.例如
设此函数的解析式为(k>2),
∵此函数经过点(1,1),∴k=1.∴此函数可以为:.
设此函数的解析式为(k<2),
∵此函数经过点(1,1),∴, k<2.∴此函数可以为:.
设此函数的解析式为,
∵此函数经过点(1,1),∴.
∴此函数可以为:.
13、(3,3)
【解析】
因为(-2,-1)、(-2,3)两点横坐标相等,长方形有一边平行于y轴,(-2,-1)、(3,-1)两点纵坐标相等,长方形有一边平行于x轴,即可求出第四个顶点的坐标.
【详解】
解:过(﹣2,3)、(3,﹣1)两点分别作x轴、y轴的平行线,
交点为(3,3),即为第四个顶点坐标.
故答案为:(3,3).
此题考查坐标与图形性质,解题关键在于画出图形
三、解答题(本大题共5个小题,共48分)
14、(1)购买甲种树苗500株,乙种树苗300株(2)320株(3)当选购甲种树苗320株,乙种树苗480株时,总费用最低,为22080元
【解析】
(1)设购买甲种树苗株,乙种树苗株,列方程组求得
(2)设购买甲种树苗株,乙种树苗株,列不等式求解
(3)设甲种树苗购买株,购买树苗的费用为元,列出关系式,根据函数的性质求出w的最小值.
【详解】
(1)设购买甲种树苗株,乙种树苗株,得
解得
答:购买甲种树苗500株,乙种树苗300株.
(2)设购买甲种树苗株,乙种树苗株,得
解得
答:甲种树苗至少购买320株.
(3)设甲种树苗购买株,购买树苗的费用为元,
则
∵∴随增大而减小
所以当时,有最小值,最小=元
答:当选购甲种树苗320株,乙种树苗480株时,总费用最低,为22080元.
15、(1);;(2);;(3);;(4)10;26; 12;2;
【解析】
(1)依据规律可得,如果勾为7,则股24=,
弦25=;
(2)如果勾用n(n≥3,且n为奇数)表示时,则股=,
弦=;
(3)根据规律可得,如果a,b,c是符合同样规律的一组勾股数,a=2m(m表示大于1的整数),则b=m2-1,c=m2+1;
(4)依据柏拉图公式,若m2-1=24,则m=5,2m=10,m2+1=26;若m2+1=1,则m=6,2m=12,m2-1=2.
【详解】
解:(1)依据规律可得,如果勾为7,则股24=,
弦25=;
故答案为:;;
(2)如果勾用n(n≥3,且n为奇数)表示时,则股=,
弦=;
故答案为:;;
(3)根据规律可得,如果a,b,c是符合同样规律的一组勾股数,a=2m(m表示大于1的整数),则b=m2-1,c=m2+1;
故答案为:m2-1,m2+1;
(4)依据柏拉图公式,
若m2-1=24,则m=5,2m=10,m2+1=26;
若m2+1=1,则m=6,2m=12,m2-1=2;
故答案为:10、26;12、2.
此题主要考查了勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.
16、(1),;(2)或.
【解析】
(1)先整理成一元二次方程的一半形式,然后用求根公式法求解即可;
(2)先移项,然后用配方法求解即可.
【详解】
(1)原方程整理为一般式为:,
,,,
,
则,
,;
(2),
,
,
,
或 ,
或.
本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.
17、3.2克.
【解析】
设A4薄型纸每页的质量为x克,则A4厚型纸每页的质量为(x+0.8)克,然后根据“双面打印,用纸将减少一半”列方程,然后解方程即可.
【详解】
解:设A4薄型纸每页的质量为x克,则A4厚型纸每页的质量为(x+0.8)克,根据题意,得:,
解得:x=3.2,
经检验:x=3.2是原分式方程的解,且符合题意.
答:A4薄型纸每页的质量为3.2克.
本题考查分式方程的应用,掌握题目中等量关系是关键,注意分式方程结果要检验.
18、(1)(2,3);(2);(3)﹣<k<0或0<k<
【解析】
(1)对题目中的函数解析式进行变形即可求得点P的坐标;
(2)根据题意可以得到相应的不等式组,从而可以求得k的取值范围;
(3)根据题意和三角形三边的关系,利用分类讨论的数学思想可以求得k的取值范围.
【详解】
解:(1)∵y=2kx﹣4k+3=2k(x﹣2)+3,
∴y=2kx﹣4k+3(k≠0)恒过某一定点P的坐标为(2,3),
即点P的坐标为(2,3);
(2)∵点A、B坐标分别为(0,1)、(2,1),直线l与线段AB相交,直线l:y=2kx﹣4k+3(k≠0)恒过某一定点P(2,3),
∴
解得,k;
(3)当k>0时,直线y=2kx﹣4k+3中,y随x的增大而增大,
∴当0≤x≤2时,﹣4k+3≤y≤3,
∵以y1、y2、y3为长度的3条线段能围成三角形,
∴,得k<,
∴0<k<;
当k<0时,直线y=2kx﹣4k+3中,y随x的增大而减小,
∴当0≤x≤2时,3≤y≤﹣4k+3,
∵以y1、y2、y3为长度的3条线段能围成三角形,
∴3+3>﹣4k+3,得k>﹣,
∴﹣<k<0,
由上可得,﹣<k<0或0<k<.
故答案为(1)(2,3);(2);(3)﹣<k<0或0<k<
本题考查一次函数图象与系数的关系、一次函数图象上点的坐标特征、三角形三边关系,解答本题的关键是明确题意,找出所求问题需要的条件,利用分类讨论的数学思想解答.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、70°
【解析】
在□ABCD中,∠A+∠D=180°,因为∠A=110°,所以∠D=70°.
故答案:70°.
20、﹣1
【解析】
直接提取公因式ab,进而将已知代入求出即可.
【详解】
∵a+b=3,ab=-3,
∴a2b+ab2=ab(a+b)=4×(-3)=-1.
故答案为-1
此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.
21、1,1.
【解析】
本题考查统计的有关知识,众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.
【详解】
数据1出现了3次最多,这组数据的众数是1,
共10个数据,从小到大排列此数据处在第5、6位的数都为1,故中位数是1.
故答案为:1,1.
本题属于基础题,考查了确定一组数据的中位数和众数的能力.要注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求;如果是偶数个则找中间两位数的平均数.
22、50°或90°
【解析】
分析:分别从若AP⊥ON与若PA⊥OA去分析求解,根据三角函数的性质,即可求得答案.
详解:当AP⊥ON时,∠APO=90°,则∠A=50°,
当PA⊥OA时,∠A=90°,
即当△AOP为直角三角形时,∠A=50或90°.
故答案为50°或90°.
点睛:此题考查了直角三角形的性质,注意掌握数形结合思想与分类讨论思想的应用.
23、x≤1
【解析】
观察函数图形得到当x≤1时,一次函数y=ax+b的函数值小于2,即ax+b≤2
【详解】
解:根据题意得当x≤1时,ax+b≤2,
即不等式ax+b≤2的解集为:x≤1.
故答案为:x≤1.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)1的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
二、解答题(本大题共3个小题,共30分)
24、(1)点A(﹣4,0),点B(0,2);(2)点P(﹣1,0)或(﹣7,0)或(7,0);(3)S△BFC=.
【解析】
(1)令x=0,y=0可求点A,点B坐标;
(2)分OM为边,OM为对角线两种情况讨论,由平行四边形的性质可求点P坐标;
(3)过点C作CG⊥AB,交x轴于点G,由题意可得点C坐标,即可求直线CG解析式为:y=−2x+,可得点G坐标,由锐角三角函数和角平分线的性质可得,可求点E坐标,用待定系数法可求直线CF解析式,可求点F坐标,即可求△BFC的面积.
【详解】
(1)当x=0时,y=2,
当y=0时,0=×x+2
∴x=﹣4
∴点A(﹣4,0),点B(0,2)
故答案为:(﹣4,0),(0,2)
(2)设点P(x,0)
若OM为边,则OM∥PN,OM=PN
∵点M的坐标为(0, ),
∴OM⊥x轴,OM=
∴PN⊥x轴,PN=
∴当y=时,则=x+2
∴x=﹣1
当y=﹣时,则﹣=x+2
∴x=﹣7
∴点P(﹣1,0),点P(﹣7,0)
若OM为对角线,则OM与PN互相平分,
∵点M的坐标为(0,),点O的坐标(0,0)
∴OM的中点坐标(0,)
∵点P(x,0),
∴点N(﹣x,)
∴=×(﹣x)+2
∴x=7
∴点P(7,0)
综上所述:点P(﹣1,0)或(﹣7,0)或(7,0)
(3)∵CD=,即点C纵坐标为,
∴=x+2
∴x=3
∴点C(3,)
如图,过点C作CG⊥AB,交x轴于点G,
∵CG⊥AB,
∴设直线CG解析式为:y=﹣2x+b
∴=﹣2×3+b
∴b=
∴直线CG解析式为:y=﹣2x+,
∴点G坐标为(,0)
∵点A(﹣4,0),点B(0,2)
∴OA=4,OB=2,AG=
∵tan∠CAG=
∴
∵∠ACF=45°,∠ACG=90°
∴∠ACF=∠FCG=45°
∴,且AE+EG=
∴AE=
∴OE=AE﹣AO=
∴点E坐标为(,0)
设直线CE解析式为:y=mx+n
∴
解得:m=3,n=
∴直线CE解析式为:y=3x
∴当x=0时,y=
∴点F(0,)
∴BF=
∴S△BFC=.
本题是一次函数综合题,考查了待定系数法求解析式,平行四边形的性质,锐角三角函数等知识,求出点E坐标是本题的关键.
25、(1)5,1;(2)芦苇的长度为13尺.
【解析】
(1)直接利用题意结合图形得出各线段长;
(2)利用勾股定理得出AG的长进而得出答案.
【详解】
(1)线段AF的长为5尺,线段EF的长为1尺;
故答案为:5,1;
(2)设芦苇的长度x尺,
则图中AG=x,GF=x−1,AF=5,
在Rt△AGF中,∠AFC=90∘,
由勾股定理得 AF+FG=AG.
所以 5+(x−1) =x,
解得 x=13,
答:芦苇的长度为13尺.
此题考查勾股定理,解题关键在于得出AG的长.
26、见解析
【解析】
根据MN是BD的垂直平分线可得OB=OD,根据两直线平行,内错角相等可得∠OBN=∠ODM,然后利用“角边角”证明△BON和△DOM全等,根据全等三角形对应边相等可得BN=MD,从而求出四边形BMDN是平行四边形,再根据线段垂直平分线上的点到两端点的距离相等可得MB=MD,然后根据邻边相等的平行四边形是菱形证明即可.
【详解】
∵MN是BD的垂直平分线,
∴OB=OD,∠BON=∠DOM,
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠OBN=∠ODM
在△BON和△DOM中,
,
∴△BON≌△DOM(ASA),
∴BN=MD,
∴四边形BMDN是平行四边形,
∵MN是BD的垂直平分线,
∴MB=MD,
∴平行四边形BMDN是菱形.
本题考查了菱形的判定,主要利用了矩形的性质,线段垂直平分线上的点到两端点的距离相等的性质,平行四边形的判定与性质,全等三角形的判定与性质,熟记各性质并准确识图是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
时间
2014
2015
2016
2017
2018
2019
会期(天)
11
13
14
13
18
13
尺码(厘米)
25
25.5
26
26.5
27
购买量(双)
1
2
3
2
2
广东省深圳市罗湖区2025届九年级数学第一学期开学学业水平测试模拟试题【含答案】: 这是一份广东省深圳市罗湖区2025届九年级数学第一学期开学学业水平测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
广东省深圳市龙岗区龙城初级中学2025届数学九年级第一学期开学检测模拟试题【含答案】: 这是一份广东省深圳市龙岗区龙城初级中学2025届数学九年级第一学期开学检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届陕西省汉中学市实验中学九年级数学第一学期开学学业水平测试试题【含答案】: 这是一份2025届陕西省汉中学市实验中学九年级数学第一学期开学学业水平测试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。