广东省深圳市福田片区2024-2025学年九年级数学第一学期开学教学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所用的时间与原计划生产450台机器所用的时间相同.若设原计划平均每天生产x台机器,则可列方程为( )
A.=B.=C.=D.=
2、(4分)若直角三角形中,斜边的长为13,一条直角边长为5,则这个三角形的面积是( )
A.60B.30C.20D.32
3、(4分)已知点M的坐标为(3,﹣4),则与点M关于x轴和y轴对称的M1、M2的坐标分别是( )
A.(3,4),(3,﹣4) B.(﹣3,﹣4),(3,4)
C.(3,﹣4),(﹣3,﹣4) D.(3,4),(﹣3,﹣4)
4、(4分)二次根式中字母的范围为( )
A.B.C.D.
5、(4分)宇宙船使用的陀螺仪直径要求误差不能超过0.00000012米.用科学记数法表示为( )
A.1.2×10﹣7米B.1.2×107米C.1.2×10﹣6米D.1.2×106米
6、(4分)一个三角形的三个内角之比是1∶2∶3,且最小边长度是8,则最长边的长度是( )
A.10B.12C.16D.24
7、(4分)一组数据2,3,5,5,4的众数、中位数分别是( )
A.5,4B.5,5C.5,4.5D.5,3.8
8、(4分)已知反比例函数y=kx-1的图象过点A(1,-2),则k的值为( )
A.1B.2C.-2D.-1
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在中,,,,点、分别是、的中点,交的延长线于,则四边形的面积为______.
10、(4分)汽车行驶前油箱中有汽油52公升,已知汽车每百公里耗油8公升,油箱中的余油量Q(公升)(油箱中剩余的油量不能少于4公升)与它行驶的距离s(百公里)之间的函数关系式为_____(注明s的取值范围).
11、(4分)若关于x的一元二次方程有两个不相等的实数根,则m的取值范围________
12、(4分)如图,O为数轴原点,数轴上点A表示的数是3,AB⊥OA,线段AB长为2,以O为圆心,OB为半径画弧交数轴于点C.则数轴上表示点C的数为_________.
13、(4分)已知四边形是平行四边形,且,,三点的坐标分别是,,则这个平行四边形第四个顶点的坐标为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,直线与x轴、y轴分别交于点A和点B,点C在线段AB上,点D在y轴的负半轴上,C、D两点到x轴的距离均为1.
(1)点C的坐标为 ,点D的坐标为 ;
(1)点P为线段OA上的一动点,当PC+PD最小时,求点P的坐标.
15、(8分)某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.
(1)求A型空调和B型空调每台各需多少元;
(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?
(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?
16、(8分)如图,已知矩形ABCD,用直尺和圆规进行如下操作:
①以点A为圆心,以AD的长为半径画弧交BC于点E;
②连接AE,DE;
③作DF⊥AE于点F.
根据操作解答下列问题:
(1)线段DF与AB的数量关系是 .
(2)若∠ADF=60°,求∠CDE的度数.
17、(10分)如图,修公路遇到一座山,于是要修一条隧道.为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过C点作直线AB的垂线L,过点B作一直线(在山的旁边经过),与L相交于D点,经测量∠ABD=135°,BD=800米,求直线L上距离D点多远的C处开挖?(结果保留根号)
18、(10分)如图,在矩形ABCD中,,点P从点D出发向点A运动,运动到点A即停止;同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是,连接PQ、AQ、设点P、Q运动的时间为ts.
当t为何值时,四边形ABQP是矩形;
当t为何值时,四边形AQCP是菱形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若代数式有意义,则的取值范围为__________.
20、(4分)已知一次函数,反比例函数(,,是常数,且),若其中-部分,的对应值如表,则不等式的解集是_________.
21、(4分)在△ABC中,AB=,AC=5,若BC边上的高等于3,则BC边的长为_____.
22、(4分)已知若关于x的分式方程有增根,则__________.
23、(4分)化简的结果为________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在平面直角坐标系中,函数的图象经过点,直线与x轴交于点.
(1)求的值;
(2)过第二象限的点作平行于x轴的直线,交直线于点C,交函数的图象于点D.
①当时,判断线段PD与PC的数量关系,并说明理由;
②若,结合函数的图象,直接写出n的取值范围.
25、(10分)△ABC 在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为 1 个单位长度.
(1)画出△ABC 关于原点 O 的中心对称图形△A1B1C1,并写出点 A1 的坐标;
(2)将△ABC 绕点 C 顺时针旋转 90°得到△A2B2C,画出△A2B2C,求在旋转过程中,点 A 所经过的路径长
26、(12分)如图,将菱形OABC放置于平面直角坐标系中,边OA与x轴正半轴重合,D为边OC的中点,点E,F,G分别在边OA,AB与BC上,若∠COA=60°,OA=4,则当四边形DEFG为菱形时,点G的坐标为_____.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据现在生产600台机器的时间与原计划生产450台机器的时间相同,所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间.
【详解】
解:设原计划每天生产x台机器,则现在可生产(x+50)台.
依题意得:=.
故选:C.
此题主要考查了列分式方程应用,利用本题中“现在平均每天比原计划多生产50台机器”这一个隐含条件,进而得出等式方程是解题关键.
2、B
【解析】
解:根据直角三角形的勾股定理可得:
另一条直角边=,
则S=12×5÷2=30
故选:B.
3、D
【解析】
直接利用关于x,y轴对称点的性质分别得出答案.
【详解】
∵点M的坐标为(3,﹣4),∴与点M关于x轴和y轴对称的M1、M2的坐标分别是:(3,4),(﹣3,﹣4).
故选D.
本题考查了关于x,y轴对称点的性质,正确掌握横纵坐标的关系是解题的关键.
4、B
【解析】
根据二次根式有意义的条件可得a−4≥0,解不等式即可.
【详解】
解:由题意得:a−4≥0,
解得:a≥4,
故选:B.
此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.
5、A
【解析】
科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值时,n是正数;当原数的绝对值时,n是负数.
【详解】
解:0.00000012米=1.2×10﹣7米,故答案为A。
此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.
6、C
【解析】
根据三角形的三个内角之比是1:2:3,求出各角的度数,再根据直角三角形的性质解答即可.
【详解】
设一份是x,则三个角分别是x,2x,3x.
再根据三角形的内角和定理,得:
x+2x+3x=180,
解得:x=30,则2x=60,3x=90.
故此三角形是有一个30角的直角三角形.
根据30的角所对的直角边是斜边的一半,得,最长边的长度是1.
故选C.
此题要首先根据三角形的内角和定理求得三个角的度数,再根据直角三角形的性质求得最长边的长度即可.
7、A
【解析】
根据众数的定义即众数是一组数据中出现次数最多的数和中位数的定义即中位数是将一组数据从小到大重新排列后,最中间的那个数即可求出答案.
【详解】
数据2,3,5,5,4中,
5出现了2次,出现的次数最多,
则众数是5;
按大小顺序排列为5,5,4,3,2,最中间的数是4,
则中位数是4;
故选A.
此题考查了众数和中位数,掌握众数和中位数的定义是解题的关键,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).
8、C
【解析】
直接把点(1,-2)代入反比例函数y= 即可得出结论.
【详解】
∵反比例函数y=的图象过点A(1,−2),
∴−2= ,
解得k=−2.
故选C.
此题考查反比例函数图象上点的坐标特征,解题关键在于把已知点代入解析式
二、填空题(本大题共5个小题,每小题4分,共20分)
9、12
【解析】
由于AF∥BC,从而易证△AEF≌△DEC(AAS),所以AF=CD,从而可证四边形AFBD是平行四边形,所以,又因为BD=DC,所以,所以,从而求出答案;
【详解】
解:∵AF∥BC,
∴∠AFC=∠FCD,
在△AEF与△DEC中,
,
∴△AEF≌△DEC(AAS),
∴AF=DC,
∵BD=DC,
∴AF=BD,
∴四边形AFBD是平行四边形,
∴,
又∵BD=DC,
∴,
∴,
∵∠BAC=90°,AB=4,AC=6,
∴S△ABC=AB×AC=×4×6=12,
∴四边形AFBD的面积为:12;
故答案为:12.
本题主要考查了平行四边形的判定与性质,全等三角形的判定与性质,掌握平行四边形的判定与性质,全等三角形的判定与性质是解题的关键.
10、Q=52﹣8s(0≤s≤6).
【解析】
求余量与行驶距离之间的关系,每行使百千米耗油8升,则行驶s百千米共耗油8s,所以余量为Q=52﹣8s,根据油箱中剩余的油量不能少于4公升求出s的取值范围.
【详解】
解:∵每行驶百千米耗油8升,
∴行驶s百公里共耗油8s,
∴余油量为Q=52﹣8s;
∵油箱中剩余的油量不能少于4公升,
∴52﹣8s≥4,解得s≤6,
∴s的取值范围为0≤s≤6.
故答案为:Q=52﹣8s(0≤s≤6).
本题考查一次函数在是实际生活中的应用,在求解函数自变量范围的时候,一定要考虑变量在本题中的实际意义.
11、
【解析】
根据∆>0列式求解即可.
【详解】
由题意得
4-8m>0,
∴.
故答案为:.
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.
12、
【解析】
首先利用勾股定理得出BO的长,再利用A点的位置得出答案.
【详解】
解:∵AB⊥OA
∴∠OAB=90°,
∵OA=3、AB=2,
则数轴上表示点C的数为
故答案为:
本题考查的是实数与数轴以及勾股定理,熟知实数与数轴上各点是一一对应关系与勾股定理是解答此题的关键.
13、或或.
【解析】
根据平行四边形的性质,分别以BC、AC、AB为对角线,分三种情况进行分析,即可求得答案.
【详解】
解:由平行四边形的性质可知:
当以BC为对角线时,第四个顶点的坐标为D1;
当以AC为对角线时,第四个顶点的坐标为D2;
当以AB为对角线时,第四个顶点的坐标为D3;
故答案为:或或.
本题考查了平行四边形的性质:平行四边形的对边平行且相等.解此题的关键是分类讨论数学思想的运用.
三、解答题(本大题共5个小题,共48分)
14、(1)(-3,1);(0,-1)
(1)P(,0)
【解析】
(1)根据直线与C、D两点到x轴的距离均为1即可求出C,D的坐标;(1)连接CD,求出直线CD与x轴的交点即为P点.
【详解】
(1)令y=1,解得x=-3,∴点C的坐标为(-3,1)
令y=-1,解得x=0,∴点D的坐标为(0,-1)
(1)如图,连接CD,求出直线CD与x轴的交点即为P点.
设直线CD的解析式为y=kx+b,
把(-3,1),(0,1)代入得
解得
∴y=x-1
令y=0,解得x=
∴P(,0)
此题主要考查一次函数的图像与性质,解题的关键是熟知待定系数法确定函数关系式.
15、(1)A型空调和B型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,案三:采购A型空调12台,B型空调18台;(3)采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.
【解析】
分析:(1)根据题意可以列出相应的方程组,从而可以解答本题;
(2)根据题意可以列出相应的不等式组,从而可以求得有几种采购方案;
(3)根据题意和(2)中的结果,可以解答本题.
详解:(1)设A型空调和B型空调每台各需x元、y元,
,解得,,
答:A型空调和B型空调每台各需9000元、6000元;
(2)设购买A型空调a台,则购买B型空调(30-a)台,
,
解得,10≤a≤12,
∴a=10、11、12,共有三种采购方案,
方案一:采购A型空调10台,B型空调20台,
方案二:采购A型空调11台,B型空调19台,
方案三:采购A型空调12台,B型空调18台;
(3)设总费用为w元,
w=9000a+6000(30-a)=3000a+180000,
∴当a=10时,w取得最小值,此时w=210000,
即采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.
点睛:本题考查一次函数的应用、一元一次不等式组的应用、二元一次方程组的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和不等式的思想解答.
16、(1)DF=AB;(2)15°
【解析】
(1)利用角平分线的性质定理证明DF=DC即可解决问题;
(2)只要证明∠EDCC=∠EDF即可;
【详解】
解:(1)结论:DF=AB.
理由:∵四边形ABCD是矩形,
∴AB=CD,AD∥BC,∠C=90°,
∵AD=AE,
∴∠ADE=∠AED=∠DEC,
∵DF⊥AE,DC⊥BC,
∴DF=DC=AB.
故答案为DF=AB.
(2)∵DE=DE,DF=DC,
∴Rt△DEF≌△DEC,
∴∠EDF=∠EDC,
∵∠ADF=60°,∠ADC=90°,
∴∠CDF=30°,
∴∠CDE=∠CDF=15°.
本题考查基本作图、全等三角形的判定和性质、矩形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
17、直线L上距离D点400米的C处开挖.
【解析】
首先证明△BCD是等腰直角三角形,再根据勾股定理可得CD2+BC2=BD2,然后再代入BD=800米进行计算即可.
【详解】
∵CD⊥AC,
∴∠ACD=90°,
∵∠ABD=135°,
∴∠DBC=45°,
∴∠D=45°,
∴△BCD是等腰直角三角形,CB=CD,
在Rt△DCB中:CD2+BC2=BD2,
2CD2=8002,
CD=400(米),
答:直线L上距离D点400米的C处开挖.
此题考查等腰直角三角形的判定及性质,利用勾股定理求直角三角形的边长,邻补角的性质求角度.
18、当时,四边形ABQP为矩形; 当时,四边形AQCP为菱形.
【解析】
当四边形ABQP是矩形时,,据此求得t的值;
当四边形AQCP是菱形时,,列方程求得运动的时间t;
【详解】
由已知可得,,
在矩形ABCD中,,,
当时,四边形ABQP为矩形,
,得
故当时,四边形ABQP为矩形.
由可知,四边形AQCP为平行四边形
当时,四边形AQCP为菱形
即时,四边形AQCP为菱形,解得,
故当时,四边形AQCP为菱形.
本题考查了菱形、矩形的判定与性质解决此题注意结合方程的思想解题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、且.
【解析】
根据二次根式和分式有意义的条件进行解答即可.
【详解】
解:∵代数式有意义,
∴x≥0,x-1≠0,
解得x≥0且x≠1.
故答案为x≥0且x≠1.
本题考查了二次根式和分式有意义的条件,二次根式的被开方数为非负数,分式的分母不为零.
20、或
【解析】
根据表可求出反比例函数与一次函数的交点,然后根据交点及表格中对应的函数值即可求出等式的解集.
【详解】
根据表格可知,当x=-2和x=4时,两个函数值相等,
∴与的交点为(-2,-4),(4,2),
根据图表可知,要使,则或.
故答案为:或.
本题考查了反比例函数与一次函数交点问题,熟练掌握反比例函数与一次函数的性质是解答本题的关键.
21、9或1
【解析】
【分析】△ABC中,∠ACB分锐角和钝角两种:
①如图1,∠ACB是锐角时,根据勾股定理计算BD和CD的长可得BC的值;
②如图2,∠ACB是钝角时,同理得:CD=4,BD=5,根据BC=BD﹣CD代入可得结论.
【详解】有两种情况:
①如图1,∵AD是△ABC的高,
∴∠ADB=∠ADC=90°,
由勾股定理得:BD==5,
CD==4,
∴BC=BD+CD=5+4=9;
②如图2,同理得:CD=4,BD=5,
∴BC=BD﹣CD=5﹣4=1,
综上所述,BC的长为9或1;
故答案为:9或1.
【点睛】本题考查了勾股定理的运用,熟练掌握勾股定理是关键,并注意运用了分类讨论的思想解决问题.
22、1
【解析】
增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x-2=0,所以增根是x=2,把增根代入化为整式方程的方程即可求出未知字母的值.
【详解】
方程两边都乘(x-2),得
1+(x-2)=k
∵原方程有增根,
∴最简公分母x-2=0,即增根是x=2,
把x=2代入整式方程,得k=1.
故答案为1.
增根问题可按如下步骤进行:
①根据最简公分母确定增根的值;
②化分式方程为整式方程;
③把增根代入整式方程即可求得相关字母的值.
23、
【解析】
首先把分子、分母分解因式,然后约分即可.
【详解】
解:==
本题主要考查了分式的化简,正确进行因式分解是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1).(2)①判断:.理由见解析;②或.
【解析】
(1)利用代点法可以求出参数 ;
(2)①当时,即点P的坐标为,即可求出点的坐标,于是得出;
②根据①中的情况,可知或再结合图像可以确定的取值范围;
【详解】
解:(1)∵函数的图象经过点,
∴将点代入,即 ,得:
∵直线与轴交于点,
∴将点代入,即 ,得:
(2)①判断: .理由如下:
当时,点P的坐标为,如图所示:
∴点C的坐标为 ,点D的坐标为
∴ , .
∴.
②由①可知当时
所以由图像可知,当直线往下平移的时也符合题意,即 ,
得;
当时,点P的坐标为
∴点C的坐标为 ,点D的坐标为
∴ ,
∴
当 时,即,也符合题意,
所以 的取值范围为:或 .
本题主要考查了反比例函数和一次函数,熟练求反比例函数和一次函数解析式的方法、坐标与线段长度的转化和数形结合思想是解题关键.
25、 (1)图见解析;A1 (2,4);(2) 点 A 所经过的路径长为
【解析】
(1)根据网格结构找出点A、B、C关于原点O的中心对称点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A1的坐标;
(2)根据网格结构找出点A、B绕点C顺时针旋转90°的对应点A2、B2的位置,然后顺次连接即可;利用勾股定理列式求出AC,再根据弧长公式列式计算即可得解.
【详解】
解:(1)△A1B1C1如图所示,A1(2,-4);
(2)△A2B2C如图所示,由勾股定理得,AC==,
点A所经过的路径长:l .
故答案为:(1)图见解析;A1 (2,4);(2) 点 A 所经过的路径长为.
本题考查利用旋转变换作图,勾股定理,弧长公式,熟练掌握网格结构,准确找出对应点的位置是解题的关键.
26、(3,2 )
【解析】
作辅助线,构建全等三角形,证明,得,由中点得,根据直角三角形30度角的性质和勾股定理得:,,所以,证明,根据菱形的对角线互相垂直平分得:的长,从而得的长,可得结论.
【详解】
解:过作于,交的延长线于,连接、,交于点,
四边形是菱形,
,
,
,,
,
,
,
,
中,,
,
,,
,
四边形是菱形,
,,,
,
,
,,
四边形为矩形,
,,
,,,
,
,
四边形是平行四边形,
,
,
,
,,
故答案为:,.
本题考查坐标与图形的性质、菱形的性质、全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
题号
一
二
三
四
五
总分
得分
广东省深圳市宝安、罗湖、福田、龙华四区2024-2025学年数学九上开学教学质量检测试题【含答案】: 这是一份广东省深圳市宝安、罗湖、福田、龙华四区2024-2025学年数学九上开学教学质量检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年广东省深圳市福田区数学九上开学综合测试模拟试题【含答案】: 这是一份2024-2025学年广东省深圳市福田区数学九上开学综合测试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年广东省深圳市福田区八校数学九年级第一学期开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年广东省深圳市福田区八校数学九年级第一学期开学学业质量监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

