2024年广东省深圳市福田区侨香外国语学校数学九年级第一学期开学统考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在中,是边上的一点,射线和的延长线交于点,如果,那么的值是( )
A.B.C.D.
2、(4分)关于x的方程kx2+2x﹣1=0有实数根,则k的取值范围是( )
A.k≥﹣1B.k≥﹣1且k≠0C.k≤﹣1D.k≤1且k≠0
3、(4分)如图,中,对角线、相交于点O,交于点E,连接,若的周长为28,则的周长为( )
A.28B.24C.21D.14
4、(4分)如图,先将矩形ABCD沿三等分线折叠后得到折痕PQ,再将纸片折叠,使得点A落在折痕PQ上E点处,此时折痕为BF,且AB=1.则AF的长为( )
A.4B.C.D.
5、(4分)如图,将含30°角的直角三角板ABC的直角顶点C放在直尺的一边上,已知∠A=30°,∠1=40°,则∠2的度数为( )
A.55°B.60°C.65°D.70°
6、(4分)若正比例函数y=kx的图象经过点(1,2),则k的值为
A.B.-2C.D.2
7、(4分)已知:如图,在长方形ABCD中,AB=4,AD=1.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC-CD-DA向终点A运动,设点P的运动时间为秒,当的值为_____秒时,△ABP和△DCE全等.
A.1B.1或3C.1或7D.3或7
8、(4分)如图,在菱形ABCD中,对角线AC,BD相交于点O. 下列结论中不一定成立的是( )
A.AB∥CDB.OA=OC
C.AC⊥BDD.AC=BD
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若-,则的取值范围是__________.
10、(4分)一次函数y=kx﹣2的图象经过第一、三、四象限,且与两坐标轴围成的三角形的面积等于4,则k的值等于__.
11、(4分)若直线y=kx+b与直线y=2x平行,且与y轴相交于点(0,–3),则直线的函数表达式是__________.
12、(4分)某中学规定:学生的学期体育综合成绩满分为100分,其中,期中考试成绩占40%,期末考试成绩占60%,小海这个学期的期中、期末成绩(百分制)分别是80分、90分,则小海这个学期的体育综合成绩是 分.
13、(4分)若已知a,b为实数,且=b﹣1,则a+b=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知向量,(如图),请用向量的加法的平行四边形法则作向量(不写作法,画出图形)
15、(8分)如图,平行四边形ABCD的边OA在x轴上,将平行四边形沿对角线AC对折,AO的对应线段为AD,且点D,C,O在同一条直线上,AD与BC交于点E.
(1)求证:△ABC≌△CDA.
(2)若直线AB的函数表达式为,求三角线ACE的面积.
16、(8分)如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交点为 A(-3,0),与y轴交点为B,且与正比例函数的图象的交于点 C(m,4).
(1)求m的值及一次函数 y=kx+b的表达式;
(2)若点P是y轴上一点,且△BPC的面积为6,请直接写出点P的坐标.
17、(10分)随着车辆的增加,交通违规的现象越来越严重,交警对某雷达测速区检测到的一组汽车的时速数据进行整理,得到其频数及频率如表(未完成):
注:30~40为时速大于等于30千米而小于40千米,其他类同
(1)请你把表中的数据填写完整;
(2)补全频数分布直方图;
(3)如果汽车时速不低于60千米即为违章,则违章车辆共有多少辆?
18、(10分)如图,方格纸中每个小方格都是边长为1的正方形,已知学校的坐标为A(2,2).
(1)请在图中建立适当的直角坐标系,并写出图书馆的坐标;
(2)若体育馆的坐标为C(-2,3),请在坐标系中标出体育馆的位置,并顺次连接学校、图书馆、体育馆,得到△ABC,求△ABC的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在中,,,将绕点A按顺时针方向旋转得到旋转角为,点B,点C的对应点分别为点D,点E,过点D作直线AB的垂线,垂足为F,过点E作直线AC的垂线,垂足为P,当时,点P与点C之间的距离是________.
20、(4分)如图,矩形纸片ABCD中,AD=5,AB=1.若M为射线AD上的一个动点,将△ABM沿BM折叠得到△NBM.若△NBC是直角三角形.则所有符合条件的M点所对应的AM长度的和为_____.
21、(4分)如图,在平面直角坐标系xOy中,已知正比例函数y= -2x和反比例函数的图象交于A(a,-4),B两点。过原点O的另一条直线l与双曲线交于点P,Q两点(P点在第二象限),若以点A,B,P,Q为顶点的四边形面积为24,则点P的坐标是_______
22、(4分)在平面直角坐标系中,将直线y=-2x+1的图象向左平移2个单位,再向上平移1个单位,所得到直线的解析式是__________。
23、(4分)反比例函数y=(k>0)在第一象限内的图象如图,点M是图象上一点,MP垂直x轴于点P,如果△MOP的面积为1,那么k的值是________.
二、解答题(本大题共3个小题,共30分)
24、(8分)某车行经销的A型自行车去年6月份销售总额为1.6万元,今年由于改造升级每辆车售价比去年增加200元,今年6月份与去年同期相比,销售数量相同,销售总额增加25%.
今年A,B两种型号车的进价和售价如下表:
(1)求今年A型车每辆售价多少元?
(2)该车行计划7月份用不超过4.3万元的资金新进一批A型车和B型车共50辆,应如何进货才能使这批车售完后获利最多?
25、(10分)如图1,为美化校园环境,某校计划在一块长为20m,宽为15m的长方形空地上修建一条宽为a(m)的甬道,余下的部分铺设草坪建成绿地.
(1)甬道的面积为 m2,绿地的面积为 m2(用含a的代数式表示);
(2)已知某公园公司修建甬道,绿地的造价W1(元),W2(元)与修建面积S之间的函数关系如图2所示.①园林公司修建一平方米的甬道,绿地的造价分别为 元, 元.②直接写出修建甬道的造价W1(元),修建绿地的造价W2(元)与a(m)的关系式;③如果学校决定由该公司承建此项目,并要求修建的甬道宽度不少于2m且不超过5m,那么甬道宽为多少时,修建的甬道和绿地的总造价最低,最低总造价为多少元?
26、(12分)如图,在平面直角坐标系xOy中,直线y=﹣2x+6交x轴于点A,交轴于点B,过点B的直线交x轴负半轴于点C,且AB=BC.
(1)求点C的坐标及直线BC的函数表达式;
(2)点D(a,2)在直线AB上,点E为y轴上一动点,连接DE.
①若∠BDE=45°,求BDE的面积;
②在点E的运动过程中,以DE为边作正方形DEGF,当点F落在直线BC上时,求满足条件的点E的坐标.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
由平行四边形的性质可得AD∥BC,AB∥CD,从而可得△EAF∽△EBC,△EAF∽△CFD,由,可得,继而可得,即可求得=.
【详解】
:∵四边形ABCD是平行四边形,
∴AD∥BC,AB∥CD,
∴△EAF∽△EBC,△EAF∽△CFD,
∵,
∴,
∴,
∴=,
故选A.
本题考查了平行四边形的性质、相似三角形的判定与性质,熟练掌握相似三角形的面积比等于相似比的平方、周长比等于相似比是解题的关键.
2、A
【解析】
分两种情况讨论:
(1)当时,方程为一元一次方程,必有实数根;
(2)当时,方程为一元二次方程,当时,必有实数根.
【详解】
(1)当时,方程为一元一次方程,必有实数根;
(2)当时,方程为一元二次方程,当时,必有实数根:
,
解得,
综上所述,.
故选:.
本题考查了根的判别式,要注意,先进行分类讨论,当方程是一元一次方程时,总有实数根;当方程为一元二次方程时,根的情况要通过判别式来判定.
3、D
【解析】
根据平行四边形的性质和中垂线定理,再结合题意进行计算,即可得到答案.
【详解】
解:∵四边形是平行四边形,
∴,,,
∵平行四边形的周长为28,
∴
∵,
∴是线段的中垂线,
∴,
∴的周长,
故选:D.
本题考查平行四边形的性质和中垂线定理,解题的关键是熟练掌握平行四边形的性质和中垂线定理.
4、C
【解析】
作EM⊥AD于M,交BC于N.只要证明△EMB∽△BNE,可得BE:EF=BN:EM,由此即可解决问题.
【详解】
解:作EM⊥AD于M,交BC于N.
在Rt△BEN中,BE=AB=1,EN=6,
∴BN=,
∵∠FEM+∠BEN=10°,∠BEN+∠EBN=10°,
∴∠FEM=∠EBN,∵∠FME=∠ENB=10°,
∴△EMB∽△BNE,
∴BE:EF=BN:EM,
∴1:EF=3:3,
∴EF=,
∴AF=EF=.
故选C.
本题考查翻折变换、矩形的性质、相似三角形的判定和性质等知识,解题的关键是准确寻找相似三角形解决问题,属于中考常考题型.
5、D
【解析】
根据平行线的性质求出∠3=∠1=40°,根据三角形的外角性质求出∠2=∠3+∠A,代入求出即可.
【详解】
∵EF∥MN,∠1=40°,∴∠1=∠3=40°.
∵∠A=30°,∴∠2=∠A+∠3=70°.
故选D.
本题考查了平行线的性质,三角形外角性质的应用,能求出∠3的度数是解答此题的关键,注意:两直线平行,内错角相等.
6、D
【解析】
∵正比例函数y=kx的图象经过点(1,1),
∴把点(1,1)代入已知函数解析式,得k=1.故选D.
7、C
【解析】
分两种情况进行讨论,根据题意得出BP=2t=2和AP=11-2t=2即可求得.
【详解】
解:因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS证得△ABP≌△DCE,
由题意得:BP=2t=2,
所以t=1,
因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS证得△BAP≌△DCE,
由题意得:AP=11-2t=2,
解得t=2.
所以,当t的值为1或2秒时.△ABP和△DCE全等.
故选C.
本题考查全等三角形的判定,判定方法有:ASA,SAS,AAS,SSS,HL.
8、D
【解析】
直接利用菱形的性质对边互相平行、对角线互相垂直且平分进而分析即可.
【详解】
∵四边形ABCD是菱形,
∴AB∥DC,OA=OC,AC⊥BD,
无法得出AC=BD,故选项D错误,
故选D.
此题主要考查了菱形的性质,正确把握菱形对角线之间关系是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
利用二次根式的性质()及绝对值的性质化简(),即可确定出x的范围.
【详解】
解:∵,
∴.
∴,即.
故答案为: .
本题考查利用二次根式的性质化简.熟练掌握二次根式的性质和绝对值的性质是解决此题的关键.
10、.
【解析】
一次函数图象与两坐标轴围成的面积,就要先求出一次函数图象与两坐标轴的交点,再由直角三角形面积公式求三角形面积,结合图象经过第一、三、四象限,判断k的取值范围,进而求出k的值.
【详解】
解:∵一次函数y=kx﹣2与两坐标轴的交点分别为,,
∴与两坐标轴围成的三角形的面积S=,
∴k=,
∵一次函数y=kx﹣2的图象经过第一、三、四象限,
∴k>0,
∴k=,
故答案为:.
本题考查了一次函数图象的特征、一次函数与坐标轴交点坐标的求法、三角形面积公式.利用三角形面积公式列出方程并求解是解题的关键.
11、y=2x–1
【解析】
根据两条直线平行问题得到k=2,然后把点(0,-1)代入y=2x+b可求出b的值,从而可确定所求直线解析式.
【详解】
∵直线y=kx+b与直线y=2x平行,
∴k=2,
把点(0,–1)代入y=2x+b得b=–1,
∴所求直线解析式为y=2x–1.
故答案为y=2x–1.
本题考查了待定系数法求函数解析式以及两条直线相交或平行问题,解题时注意:若直线y=k1x+b1与直线y=k2x+b2平行,则k1=k2.
12、1
【解析】
利用加权平均数的公式直接计算.用80分,90分分别乘以它们的百分比,再求和即可.
【详解】
小海这学期的体育综合成绩=(80×40%+90×60%)=1(分).
故答案为1.
13、6
【解析】
根据二次根式被开方数为非负数可得关于a的不等式组,继而可求得a、b的值,代入a+b进行计算即可得解.
【详解】
由题意得:,
解得:a=5,
所以:b=1,
所以a+b=6,
故答案为:6.
本题考查了二次根式有意义的条件,熟知二次根式的被开方数为非负数是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、见解析.
【解析】
利用向量的加法的平行四边形法则即可解决问题.
【详解】
如图:
即为所求.
本题考查作图-复杂作图,平面向量等知识,解题的关键是熟练掌握向量的加法的平行四边形法则,属于中考常考题型.
15、(1)证明见详解;(2)
【解析】
(1)利用平行四边形的性质及折叠的性质,可得出CD=AB,∠DCA=∠BAC,结合AC=CA可证出△ABC≌△CDA(SAS);
(2)由点D,C,O在同一直线上可得出∠DCA=∠OCA=90°,利用一次函数图象上点的坐标特征可得出点A的坐标及OA的长度,由OC∥AB可得出直线OC的解析式为y=x,进而可得出∠COA=45°,结合∠OCA=90°可得出△AOC为等腰直角三角形,利用等腰直角三角形的性质可得出OC、AC的长,结合(1)的结论可得出四边形ABDC为正方形,再利用正方形的面积公式结合S△ACE=S正方形ABDC可求出△ACE的面积.
【详解】
(1)证明:∵四边形ABCO为平行四边形,
∴AB=CO,AB∥OC,
∴∠BAC=∠OCA.
由折叠可知:CD=CO,∠DCA=∠OCA,
∴CD=AB,∠DCA=∠BAC.
在△ABC和△CDA中,
,
∴△ABC≌△CDA(SAS).
(2)解:∵∠DCA=∠OCA,点D,C,O在同一直线上,
∴∠DCA=∠OCA=90°.
当y=0时,x-1=0,解得:x=1,
∴点A的坐标为(1,0),OA=1.
∵OC∥AB,
∴直线OC的解析式为y=x,
∴∠COA=45°,
∴△AOC为等腰直角三角形,
∴AC=OC=.
∵AB∥CD,AB=CD=AC,∠DCA=90°,
∴四边形ABDC为正方形,
本题考查了平行四边形的性质、折叠的性质、全等三角形的判定、等腰直角三角形、一次函数图象上点的坐标特征以及正方形的面积,解题的关键是:(1)利用全等三角形的判定定理SAS证出△ABC≌△CDA;(2)利用一次函数图象上点的坐标特征及等腰直角三角形的性质,求出正方形边长AC的长.
16、(1)m的值为3,一次函数的表达式为
(2) 点P的坐标为(0, 6)、(0,-2)
【解析】
(1)首先利用待定系数法把C(m,4)代入正比例函数y=x中,计算出m的值,进而得到C点坐标,再利用待定系数法A、C两点坐标代入一次函数y=kx+b中,计算出k、b的值进而得到一次函数解析式.
(2)利用△BPC的面积为6,即可得出点P的坐标.
解:(1)∵点C(m,4)在正比例函数的图象上,
∴·m,即点C坐标为(3,4)
∵一次函数经过A(-3,0)、点C(3,4)
∴解得:
∴一次函数的表达式为
(2)点P的坐标为(0, 6)、(0,-2)
“点睛”此题主要考查了待定系数法求一次函数解析式知识,根据待定系数法把A、C两点坐标代入函数y=kx+b中,计算出k、b的值是解题关键.
17、(1)见解析;(2)见解析;(3)76(辆).
【解析】
(1)根据频数÷总数=频率进行计算即可:36÷200=0.18,200×0.39=78,200﹣10﹣36﹣78﹣20=56,
56÷200=0.1.
(2)结合(1)中的数据补全图形即可.
(3)根据频数分布直方图可看出汽车时速不低于60千米的车的数量.
【详解】
解:(1)填表如下:
(2)如图所示:
(3)违章车辆数:56+20=76(辆).
答:违章车辆有76辆.
18、(1)直角坐标系见解析;图书馆的坐标为B(-2,-2);(2)△ABC的面积为10.
【解析】
【分析】(1) A(2,2)推出原点,建立平面直角坐标系;(2)直接描出C(-2,3),由点的坐标得到BC边长为5,BC边上的高为4,再计算面积.
【详解】解:(1)直角坐标系如图所示.
图书馆的坐标为B(-2,-2).
(2)体育馆的位置C如图所示.观察可得△ABC中BC边长为5,BC边上的高为4,所以△ABC的面积为×5×4=10.
【点睛】本题考核知识点:平面直角坐标系. 解题关键点:理解坐标的意义,利用坐标求出线段长度.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、3或1.
【解析】
由旋转的性质可知△ACB≌△AED,推出∠CAB=∠EAD=∠CBA,则当∠DAF=∠CBA时,分两种情况,一种是A,F,E三点在同一直线上,另一种是 D,A,C在同一条直线上,可分别求出CP的长度.
【详解】
解:∵AC=BC=10,
∴∠CAB=∠CBA,
由旋转的性质知,△ACB≌△AED,
∴AE=AC=10,∠CAB=∠EAD=∠CBA,
①∵∠DAF=∠CBA,
∴∠DAF=∠EAD,
∴A,F,E三点在同一直线上,如图1所示,
过点C作CH⊥AB于H,
则AH=BH=AB=7,
∵EP⊥AC,
∴∠EPA=∠CHA=90°,
又∵∠CAH=∠EAP,CA=EA,
∴△CAH≌△EAP(AAS),
∴AP=AH=7,
∴PC=AC-AP=10-7=3;
②当D,A,C在同一条直线上时,如图2,
∠DAF=∠CAB=∠CBA,
此时AP=AD=AB=7,
∴PC=AC+AP=10+7=1.
故答案为:3或1.
本题考查了旋转的性质,等腰三角形的性质,全等三角形的判定等,解题的关键是能够分类讨论,求出两种情况的结果.
20、5.
【解析】
根据四边形ABCD为矩形以及折叠的性质得到∠A=∠MNB=90°,由M为射线AD上的一个动点可知若△NBC是直角三角形,∠NBC=90°与∠NCB=90°都不符合题意,只有∠BNC=90°.然后分 N在矩形ABCD内部与 N在矩形ABCD外部两种情况进行讨论,利用勾股定理求得结论即可.
【详解】
∵四边形ABCD为矩形,
∴∠BAD=90°,
∵将△ABM沿BM折叠得到△NBM,
∴∠MAB=∠MNB=90°.
∵M为射线AD上的一个动点,△NBC是直角三角形,
∴∠NBC=90°与∠NCB=90°都不符合题意,
∴只有∠BNC=90°.
①
当∠BNC=90°,N在矩形ABCD内部,如图3.
∵∠BNC=∠MNB=90°,
∴M、N、C三点共线,
∵AB=BN=3,BC=5,∠BNC=90°,
∴NC=4.
设AM=MN=x,
∵MD=5﹣x,MC=4+x,
∴在Rt△MDC中,CD5+MD5=MC5,
35+(5﹣x)5=(4+x)5,
解得x=3;
当∠BNC=90°,N在矩形ABCD外部时,如图5.
∵∠BNC=∠MNB=90°,
∴M、C、N三点共线,
∵AB=BN=3,BC=5,∠BNC=90°,
∴NC=4,
设AM=MN=y,
∵MD=y﹣5,MC=y﹣4,
∴在Rt△MDC中,CD5+MD5=MC5,
35+(y﹣5)5=(y﹣4)5,
解得y=9,
则所有符合条件的M点所对应的AM和为3+9=5.
故答案为5.
本题考查了翻折变换(折叠问题),矩形的性质以及勾股定理,难度适中.利用数形结合与分类讨论的数学思想是解题的关键.
21、P(﹣4,2)或P(﹣1,8).
【解析】
根据题意先求出点A(2,﹣4),利用原点对称求出B(﹣2,4),再把A代入代入反比例函数得出解析式,利用原点对称得出四边形AQBP是平行四边形,S△POB=S平行四边形AQBP×=×24=1,设点P的横坐标为m(m<0且m≠﹣2),得到P的坐标,根据双曲线的性质得到S△POM=S△BON=4,接着再分情况讨论:若m<﹣2时,可得P的坐标为(﹣4,2);若﹣2<m<0时,可得P的坐标为(﹣1,8).
【详解】
解:∵点A在正比例函数y=﹣2x上,
∴把y=﹣4代入正比例函数y=﹣2x,
解得x=2,∴点A(2,﹣4),
∵点A与B关于原点对称,
∴B点坐标为(﹣2,4),
把点A(2,﹣4)代入反比例函数 ,得k=﹣8,
∴反比例函数为y=﹣,
∵反比例函数图象是关于原点O的中心对称图形,
∴OP=OQ,OA=OB,
∴四边形AQBP是平行四边形,
∴S△POB=S平行四边形AQBP×=×24=1,
设点P的横坐标为m(m<0且m≠﹣2),
得P(m,﹣),
过点P、B分别做x轴的垂线,垂足为M、N,
∵点P、B在双曲线上,
∴S△POM=S△BON=4,
若m<﹣2,如图1,
∵S△POM+S梯形PMNB=S△POB+S△POM,
∴S梯形PMNB=S△POB=1.
∴(4﹣)•(﹣2﹣m)=1.
∴m1=﹣4,m2=1(舍去),
∴P(﹣4,2);
若﹣2<m<0,如图2,
∵S△POM+S梯形BNMP=S△BOP+S△BON,
∴S梯形BNMP=S△POB=1.
∴(4﹣)•(m+2)=1,
解得m1=﹣1,m2=4(舍去),
∴P(﹣1,8).
∴点P的坐标是P(﹣4,2)或P(﹣1,8),
故答案为P(﹣4,2)或P(﹣1,8).
此题考查一次函数和反比例函数的综合,解题关键在于做出辅助线,运用分类讨论的思想解决问题.
22、y=-2x-2
【解析】
利用平移中点的变化规律:横坐标左移加,右移减;纵坐标上移加,下移减,求解即可.
【详解】
将直线y=−2x+1的图象向左平移2个单位,再向上平移一个单位,得到的直线的解析式是:y=−2(x+2)+1+1=−2x−2,即y=−2x−2.
本题考查了一次函数图象与几何变换,熟练掌握平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.
23、1
【解析】
过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.
【详解】
解:由题意得:S△MOP=|k|=1,k=±1,
又因为函数图象在一象限,所以k=1.
故答案为:1.
主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.
二、解答题(本大题共3个小题,共30分)
24、(1)型车每辆售价为1000元;(2)型车30辆、型车20辆,获利最多.
【解析】
(1)设今年型车每辆售价为元,则去年型车每辆售价为元,根据数量总价单价结合今年6月份与去年同期相比销售数量相同,即可得出关于的分式方程,解之经检验后即可得出结论;
(2)设购进型车辆,则购进型车辆,根据总价单价数量结合总费用不超过4.3万元,即可得出关于的一元一次不等式,解之即可得出的取值范围,再根据销售利润单辆利润购进数量即可得出销售利润关于的函数关系式,利用一次函数的性质解决最值问题即可.
【详解】
解:(1)设今年型车每辆售价为元,则去年型车每辆售价为元,
根据题意得:,
解得:,
经检验,是原分式方程的解.
答:今年型车每辆售价为1000元.
(2)设购进型车辆,则购进型车辆,
根据题意得:,
解得:.
销售利润为,
,
当时,销售利润最多.
答:当购进型车30辆、购进型车20辆时,才能使这批车售完后获利最多.
本题考查了分式方程的应用、一次函数的最值以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量关系,找出销售利润关于的函数关系式.
25、(1)15a、(300﹣15a);(2)①①80、70;;②W1=80×15a=1200a,W2=70(300﹣15a)=﹣1050a+21000;③甬道宽为2米时,修建的甬道和绿地的总造价最低,最低总造价为21300元;
【解析】
(1)根据图形即可求解;
(2)①园林公司修建一平方米的甬道,绿地的造价分别为=80元,=70元②根据题意即可列出关系式;③W=W1+W2=1200a+(﹣1050a+21000)=150a+21000,再根据2≤a≤5,即可进行求解.
【详解】
解:(1)甬道的面积为15am2,绿地的面积为(300﹣15a)m2;
故答案为:15a、(300﹣15a);
(2)①园林公司修建一平方米的甬道,绿地的造价分别为=80元,=70元.
②W1=80×15a=1200a,
W2=70(300﹣15a)=﹣1050a+21000;
③设此项修建项目的总费用为W元,
则W=W1+W2=1200a+(﹣1050a+21000)=150a+21000,
∵k>0,
∴W随a的增大而增大,
∵2≤a≤5,
∴当a=2时,W有最小值,W最小值=150×2+21000=21300,
答:甬道宽为2米时,修建的甬道和绿地的总造价最低,最低总造价为21300元;
故答案为:①80、70;
此题主要考查一次函数的应用,解题的关键是根据题意得到关系式进行求解.
26、(1)C(-3,0),y=2x+1;(2)①;②(0,7)或(0,-1)
【解析】
(1)利用等腰三角形的三线合一的性质求出点C的坐标,再利用待定系数法求解即可.
(2)①如图,取点Q(-1,3),连接BQ,DQ,DQ交AB于E.证明△QDB是等腰直角三角形,求出直线QD的解析式即可解决问题.
②分两种情形:点F落在直线BC上,点F′落在直线BC上,分别求解即可.
【详解】
解:(1)∵直线y=﹣2x+1交x轴于点A,交轴于点B,
∴A(3,0),B(0,1),
∴OA=3,OB=1,
∵AB=BC,
OB⊥AC,
∴OC=OA=3,
∴C(-3,0),
设直线BC的解析式为y=kx+b,则有,
解得,
∴直线BC的解析式为y=2x+1.
(2)①如图,取点Q(-1,3),连接BQ,DQ,DQ交AB于E.
∵D(a,2)在直线y=﹣2x+1上,
∴2=﹣2a+1,
∴a=2,
∴D(2,2),
∵B(0,1),
∴,,,
∴BD2=QB2+QD2,QB=QD,
∴∠BQD=90°,∠BDQ=45°,
∵直线DQ的解析式为,
∴E(0,),
∴OE=,BE=1﹣=,
∴.
②如图,过点D作DM⊥OA于M,DN⊥OB于N.
∵四边形DEGF是正方形,
∴∠EDF=90°,ED=DF,
∵∠EDF=∠MDN=90°,
∴∠EDN=∠DFM,
∵DE=DF,DN=DM,
∴△DNE≌△DMF(SAS),
∴∠DNE=∠DMF=90°,EN=FM,
∴点F在x轴上,
∴当点F与C重合时,FM=NE=5,此时E(0,7),
同法可证,点F′在直线y=4上运动,当点F′落在BC上时,E(0,﹣1),
综上所述,满足条件的点E的坐标为(0,7)或(0,﹣1).
本题属于一次函数综合题,考查了一次函数的性质,等腰三角形的性质,正方形的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于压轴题.
题号
一
二
三
四
五
总分
得分
数据段
频数
频率
30~40
10
0.05
40~50
36
50~60
0.39
60~70
70~80
20
0.10
总计
200
1
数据段
频数
频率
30~40
10
0.05
40~50
36
0.18
50~60
78
0.39
60~70
56
0.1
70~80
20
0.10
总计
200
1
广东省深圳市福田区外国语学校(香蜜)初中部2023-2024学年九年级下学期开学考试数学试题: 这是一份广东省深圳市福田区外国语学校(香蜜)初中部2023-2024学年九年级下学期开学考试数学试题,共8页。试卷主要包含了考试结束后,请将答题卡交回等内容,欢迎下载使用。
广东省深圳市福田区外国语学校(香蜜)初中部2023-2024学年九年级下学期开学考试数学试卷: 这是一份广东省深圳市福田区外国语学校(香蜜)初中部2023-2024学年九年级下学期开学考试数学试卷,共8页。
63,广东省深圳市福田区实验教育集团侨香学校2023-2024学年八年级上学期期末数学试题(): 这是一份63,广东省深圳市福田区实验教育集团侨香学校2023-2024学年八年级上学期期末数学试题(),共7页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是,下列命题中,属于真命题的是等内容,欢迎下载使用。