广东省清远市2025届九上数学开学检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)与去年同期相比,我国石油进口量增长了,而单价增长了,总费用增长了,则( )
A.5B.10C.15D.20
2、(4分)有31位学生参加学校举行的“最强大脑”智力游戏比赛,比赛结束后根据每个学生的最后得分计算出中位数、平均数、众数和方差,如果去掉一个最高分和一个最低分,则一定不发生变化的是( )
A.中位数B.平均数C.众数D.方差
3、(4分)下图是外周边缘为正八边形的木花窗挂件,则这个八边形的每个内角为( )
A.B.C.D.
4、(4分)下面的图形中,既是中心对称又是轴对称的图形是( )
A.B.C.D.
5、(4分)已知点(-2,y1),(1,0),(3,y2)都在一次函数y=kx-2的图象上,则y1,y2,0的大小关系是( )
A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y1
6、(4分)如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,已知一条到达底部的直吸管在罐内部分的长度为a,若直吸管在罐外部分还剩余3,则吸管的总长度b(罐壁的厚度和小圆孔的大小忽略不计)范围是( )
A.12≤b≤13B.12≤b≤15C.13≤b≤16D.15≤b≤16
7、(4分)9的算术平方根是( )
A.﹣3B.±3C.3D.
8、(4分)下列关系式中:y=﹣3x+1、、y=x2+1、y=,y是x的一次函数的有( )
A.1个B.2个C.3个D.4个
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,C为线段AB上的一点,△ACM、△CBN都是等边三角形,若AC=3,BC=2,则△MCD与△BND的面积比为 .
10、(4分)如图所示,将四根木条组成的矩形木框变成▱ABCD的形状,并使其面积变为原来的一半,则这个平行四边形的一个最小的内角的度数是_____.
11、(4分)如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是 .
12、(4分)若一个三角形的两边长为和,第三边长是方程的根,则这个三角形的周长是____.
13、(4分)若八个数据x1, x2, x3, ……x8, 的平均数为8,方差为1,增加一个数据8后所得的九个数据x1, x2, x3, …x8;8的平均数________8,方差为S2 ________1.(填“>”、“=”、“<”)
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在平面直角坐标系中,O 为坐标原点,P、Q 是反比例函数(x>0)图象上的两点,过点 P、Q 分别作直线且与 x、y 轴分别交于点 A、B和点 M、N.已知点 P 为线段 AB 的中点.
(1)求△AOB 的面积(结果用含 a 的代数式表示);
(2)当点 Q 为线段 MN 的中点时,小菲同学连结 AN,MB 后发现此时直线 AN 与直线MB 平行,问小菲同学发现的结论正确吗?为什么?
15、(8分)ABCD中,过点D作DE⊥AB于点E,点F在CD上,DF=BE,连接BF,AF.
(1)求证:四边形BFDE是矩形;
(2)若AF平分∠BAD,且AE=3,DF=5,求矩形BFDE的面积.
16、(8分)某服装店进货一批甲、乙两种款型的时尚T恤衫,甲种款型共花了 10400 元,乙种款型共花了6400元,甲种款型的进货件数是乙种款型进货件数的2倍,甲种款型每件的进货价比乙种款型每件的进货价少30元.商店将这两种T恤衫分别按进货价提高60%后进行标价销售,销售一段时间后,甲种款型全部售完,乙种款型剩余一半.商店对剩下的乙种款型T恤衫按标价的五折进行降价销售,很快全部售完.
(1)甲、乙两种款型的T恤衫各进货多少件?
(2)求该商店售完这批T恤衫共获利多少元?(获利=销售收入-进货成本)
17、(10分)为了贯彻落实区中小学“阅读·写字·演讲”三项工程工作,我区各校大力推广阅读活动,某校初二(1)班为了解2月份全班学生课外阅读的情况,调查了全班学生2月份读书的册数,并根据调查结果绘制了如下不完整的条形统计图和扇形统计图:
根据以上信息解决下列问题:
(1)参加本次问卷调查的学生共有______人,其中2月份读书2册的学生有______人;
(2)补全条形统计图,并求扇形统计图中读书3册所对应扇形的圆心角度数.
18、(10分)先化简,再求值:,其中,.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A滑行至B,已知AB=500米,则这名滑雪运动员的高度下降了_____米.(参考数据:sin34°≈0.56,cs34°≈0.83,tan34°≈0.67)
20、(4分)直角三角形的两边为3和4,则该三角形的第三边为__________.
21、(4分)根据图中的程序,当输入时,输出的结果______.
22、(4分)计算:(2019﹣)0+(﹣1)2017+|2﹣π|+=_____.
23、(4分)如图,在中,为边延长线上一点,且,连结、.若的面积为1,则的面积为____.
二、解答题(本大题共3个小题,共30分)
24、(8分)平面直角坐标系中,直线y=2kx-2k (k>0)交y轴于点B,与直线y=kx交于点A.
(1)求点A的横坐标;
(2)直接写出的x的取值范围;
(3)若P(0,3)求PA+OA的最小值,并求此时k的值;
(4)若C(0,2)以A,B,C,D为顶点的四边形是以BC为一条边的菱形,求k的值.
25、(10分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.
根据以上统计图,解答下列问题:
(1)求出本次接受调查的市民共有多少人?
(2)扇形统计图中,扇形E的圆心角度数是_________;
(3)请补全条形统计图;
(4)若该市约有80万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.
26、(12分)某移动通信公司推出了如下两种移动电话计费方式,
说明:月使用费固定收取,主叫不超过限定时间不再收费,超过部分加收超时费.例如,方式一每月固定交费30元,当主叫计时不超过300分钟不再额外收费,超过300分钟时,超过部分每分钟加收0.20元(不足1分钟按1分钟计算)
(1)请根据题意完成如表的填空;
(2)设某月主叫时间为t(分钟),方式一、方式二两种计费方式的费用分别为y1(元),y2(元),分别写出两种计费方式中主叫时间t(分钟)与费用为y1(元),y2(元)的函数关系式;
(3)请计算说明选择哪种计费方式更省钱.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
设去年的石油进口量是x、单价是y,则今年我国石油进口量是(1+a%)x,单价是(1+)y.根据“总费用增长了15.5%”列出方程并解答.
【详解】
解:设去年的石油进口量是x、单价是y,则今年我国石油进口量是(1+a%)x,单价是(1+)y,
由题意得:(1+a%)x•(1+)y=xy(1+15.5%)
解得a=10(舍去负值)
故选:B.
本题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.
2、A
【解析】
根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.
【详解】
去掉一个最高分和一个最低分对中位数没有影响,故选A.
考查了统计量的选择,解题的关键是了解中位数的定义.
3、D
【解析】
根据多边形的内角和公式,列式计算即可得解.
【详解】
解:这个正八边形每个内角的度数=×(8-2)×180°=135°.
故选:D
本题考查了多边形的内角与外角,熟记多边形的内角和公式是解题的关键.
4、D
【解析】
根据轴对称图形与中心对称图形的概念进行判断即可.
【详解】
A、是轴对称图形,不是中心对称图形.故错误;
B、不是轴对称图形,是中心对称图形.故错误;
C、不是轴对称图形,是中心对称图形.故错误;
D、既是轴对称图形,也是中心对称图形.故正确.
故选D.
本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
5、B
【解析】
先根据点(1,0)在一次函数y=kx﹣1的图象上,求出k=1>0,再利用一次函数的性质判断出函数的增减性,然后根据三点横坐标的大小得出结论.
【详解】
∵点(1,0)在一次函数y=kx﹣1的图象上,∴k﹣1=0,∴k=1>0,∴y随x的增大而增大.
∵﹣1<1<3,∴y1<0<y1.
故选B.
本题考查了一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.也考查了一次函数的性质.
6、D
【解析】
此题涉及的知识点是解直角三角形,根据题目中底面半径是5,高是12,可以算出另一边,吸管在罐外部分剩余3,不同放置就可以算出总长
【详解】
底面半径是5,高是12,则吸管最长放在罐里的长度为13,加上罐外的3,总长为16;如果吸管竖直放置,则罐里最短长为12,加上罐外3总长为15,所以吸管总长范围为:
故选D
此题重点考察学生对直角三角形的解的应用,勾股定理是解题的关键
7、C
【解析】
试题分析:9的算术平方根是1.故选C.
考点:算术平方根.
8、B
【解析】
形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数,进而判断得出答案.
【详解】
解:函数y=﹣3x+1,,y=x2+1,y=中,y是x的一次函数的是:y=﹣3x+1、y=,共2个.
故选:B.
本题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、.
【解析】
试题分析:利用△ACM、△CBN都是等边三角形,则也是相似三角形,相似比是3:2,再证得△MCD∽△BND,应用相似三角形的面积比等于相似比的平方得△MCD与△BND的面积比为.
故答案为:.
考点:相似三角形的判定与性质;等边三角形的性质.
10、30°
【解析】
过A作AE⊥BC于点E,由四根木条组成的矩形木框变成▱ABCD的形状,面积变为原来的一半,可得AE=AB,由此即可求得∠ABE=30°,即平行四边形中最小的内角为30°.
【详解】
解:过A作AE⊥BC于点E,如图所示:
由四根木条组成的矩形木框变成▱ABCD的形状,面积变为原来的一半,
得到AE=AB,又△ABE为直角三角形,
∴∠ABE=30°,
则平行四边形中最小的内角为30°.
故答案为:30°
本题考查了平行四边形的面积公式及性质,根据题意求得AE=AB是解决问题的关键.
11、10
【解析】
由正方形性质的得出B、D关于AC对称,根据两点之间线段最短可知,连接DE,交AC于P,连接BP,则此时PB+PE的值最小,进而利用勾股定理求出即可.
【详解】
如图,连接DE,交AC于P,连接BP,则此时PB+PE的值最小.
∵四边形ABCD是正方形,
∴B、D关于AC对称,
∴PB=PD,
∴PB+PE=PD+PE=DE.
∵BE=2,AE=3BE,
∴AE=6,AB=8,
∴DE==10,
故PB+PE的最小值是10.
故答案为10.
12、2
【解析】
先解方程求得方程的两根,那么根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.
【详解】
解:解方程得第三边的边长为2或1.
第三边的边长,
第三边的边长为1,
这个三角形的周长是.
故答案为2.
本题考查了一元二次方程的解法和三角形的三边关系定理.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.
13、= <
【解析】
根据八个数据x1 , x2 , x3 , ……x8 , 的平均数为8,方差为1 ,利用平均数和方差的计算方法,可求出, , 再分别求出9个数的平均数和方差,然后比较大小就可得出结果
【详解】
解:∵ 八个数据x1 , x2 , x3 , ……x8 , 的平均数为8,
∴
∴,
∵增加一个数8后,九个数据x1 , x2 , x3 , 8…x8的平均数为:
;
∵ 八个数据x1 , x2 , x3 , ……x8 , 的方差为1,
∴
∴
∵增加一个数8后,九个数据x1 , x2 , x3 , 8…x8的方差为:
;
故答案为:=,<
本题考查方差,算术平均数等知识,解题的关键是熟练掌握算术平均数与方差的求法,属于中考常考题型.
三、解答题(本大题共5个小题,共48分)
14、(1)S=2a+2;(2)正确,理由见解析
【解析】
(1)过点P作PP⊥x轴,PP ⊥y轴,由P为线段AB的中点,可知PP,PP是△AOB的中位线,故OA=2PP,OB=2PP,再由点P是反比例函数y=(x>0)图象上的点,可知S = OA×OB=×2PP×2PP=2PP×PP=2a+2;
(2)由点Q为线段MN的中点,可知同(1)可得S=S =2a+2,故可得出OA•OB=OM•ON,即 ,由相似三角形的判定定理可知△AON∽△MOB,故∠OAN=∠OMB,由此即可得出结论.
【详解】
(1)过点P作PP⊥x轴,PP⊥y轴,
∵P为线段AB的中点,
∴PP,PP是△AOB的中位线,
∴OA=2PP,OB=2PP,
∵点P是反比例函数y= (x>0)图象上的点,
∴S =OA×OB=×2PP×2PP=2PP×PP=2a+2;
(2)结论正确.
理由:∵点Q为线段MN的中点,
∴同(1)可得S=S =2a+2,
∴OA⋅OB=OM⋅ON,
∴,
∵∠AON=∠MOB,
∴△AON∽△MOB,
∴∠OAN=∠OMB,
∴AN∥MB.
此题考查反比例函数综合题,解题关键在于作辅助线
15、(1)见解析;(2)1
【解析】
(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;
(2)由平行线和角平分线定义得出∠DFA=∠DAF,证出AD=DF=5,由勾股定理求出DE==4,即可得出矩形BFDE的面积.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD.
∵BE∥DF,BE=DF,
∴四边形BFDE是平行四边形.
∵DE⊥AB,
∴∠DEB=90°,
∴四边形BFDE是矩形;
(2)解:∵AB∥CD,
∴∠BAF=∠DFA,
∵AF平分∠BAD,
∴∠BAF=∠DAF,
∴∠DFA=∠DAF,
∴AD=DF=5,
∵DE⊥AB,
∴∠AED=90°,
由勾股定理得:DE==4,
∴矩形BFDE的面积=DF×DE=5×4=1.
本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DFA是解题关键.
16、(1)甲种款型的T恤衫购进1件,乙种款型的T恤衫购进40件;(2)7520元.
【解析】
(1)可设乙种款型的T恤衫购进x件,则甲种款型的T恤衫购进2x件,根据甲种款型每件的进价比乙种款型每件的进价少30元,列出方程即可求解;
(2)先求出甲款型的利润,乙款型前面销售一半的利润,后面销售一半的亏损,再相加即可求解.
【详解】
解:(1)设乙种款型的T恤衫购进x件,则甲种款型的T恤衫购进2x件,
依题意得: ,
解得:x=40,
经检验,x=40是原方程的解,且符合题意,
2x=1.
答:甲种款型的T恤衫购进1件,乙种款型的T恤衫购进40件;
(2)甲进货价:10400÷1=130(元/件),乙进货价:6400÷40=160(元/件),
130×(1+60%)×1+160×(1+60%)×(40÷2)+160×(1+60%)×0.5×(40÷2)-10400-6400
=7520(元)
答:售完这批T恤衫商店共获利7520元.
本题考查列分式方程解实际问题,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
17、(1)50;17;(2)补全条形图见详解;144°.
【解析】
(1)根据条形统计图读书4册的人数为4人,扇形图中占比8%,即可求得总人数;再根据读书2册人数占比34%,即可求得读书2册的人数;
(2)根据条形图中数据以及(1)中所求,可容易求得读书3册的人数,读书3册的人数除以总人数即为扇形图中所占百分比,再乘以360°,即为读书3册所对应扇形的圆心角度数.
【详解】
解:(1)根据条形统计图及扇形统计图知:本次问卷调查的学生共有人,
读书2册的学生有人.
(2)根据条形统计图知:读书3册的学生有人,补全如图:
读书3册的学生人数占比.
∴扇形统计图中读书3册所对应扇形的圆心角度数为:.
本题考查直方图,难度一般,是中考的常考知识点,熟练掌握扇形图、条形图的相关知识有顺利解题的关键.
18、;.
【解析】
根据分式的减法和除法可以化简题目中的式子,然后将a、b的值代入化简后的式子即可解答本题.
【详解】
解:(-)÷
=
=
=
=,
当a=+,b=-时,
原式===.
本题考查分式的化简求值、分母有理化,解答本题的关键是明确分式化简求值的计算方法.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.
【解析】
试题解析:在RtΔABC中,sin34°=
∴AC=AB×sin34°=500×0.56=1米.
故答案为1.
20、5或
【解析】
本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边4既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即4是斜边或直角边的两种情况,然后利用勾股定理求解.
【详解】
解:设第三边为,
(1)若4是直角边,则第三边是斜边,由勾股定理得:
,所以;
(2)若4是斜边,则第三边为直角边,由勾股定理得:
,所以;
所以第三边的长为5或.
故答案为:5或.
本题考查勾股定理,解题的关键是熟练掌握勾股定理,并且分情况讨论.
21、2
【解析】
根据题意可知,该程序计算是将x代入y=−2x+1.将x=5输入即可求解.
【详解】
∵x=5>3,
∴将x=5代入y=−2x+1,
解得y=2.
故答案为:2.
解题关键是弄清题意,根据题意把x的值代入,按程序一步一步计算.
22、π+2
【解析】
根据零指数幂,负整数指数幂,绝对值的性质计算即可.
【详解】
原式=.
故答案为:.
本题主要考查实数的混合运算,掌握实数的混合运算的顺序和法则是解题的关键.
23、3
【解析】
首先根据平行四边形的性质,可得AD=BC,又由,可得BE=3BC=3AD,和的高相等,即可得出的面积.
【详解】
解:∵,
∴AD=BC,AD∥BC,
∴和的高相等,
设其高为,
又∵,
∴BE=3BC=3AD,
又∵,
∴
故答案为3.
此题主要考查利用平行四边形的性质进行等量转换,即可求得三角形的面积.
二、解答题(本大题共3个小题,共30分)
24、(1)点横坐标为2;(2);(3);(4)或.
【解析】
(1)联立两直线方程即可得出答案;
(2)先根据图像求出k的取值范围,再解不等式组即可得出答案;
(3)先求出点关于直线的对称点为的坐标,连接交直线于点,此时最小,根据将和P的坐标求出直线的解析式,再令x=2,求出y的值,即可得出点A的坐标,再将点A的坐标代入y=kx中即可得出答案;
(4)根据题意得出△ABC为等腰三角形,且BC为腰,再根据A、B和C的坐标分别求出AB、BC和AC的长度,分情况进行讨论:①当时,②当时,即可得出答案.
【详解】
解:(1)根据题意得
,解得
点横坐标为2;
(2)由图像可知k>0
∴由2kx-2k>0,可得x>1;由2kx-2k
(3)如图,点关于直线的对称点为;
连接交直线于点,此时最小,
其值为;
设直线的解析式为y=ax+b
将和P的坐标代入得:
解得
∴直线的解析式为,
当x=2时,y=
.即,;
(4)以为顶点的四边形是以为一条边的菱形,
为等腰三角形,且为腰;
或,
①当时,,,解得;
②当时,,,
解得.
或
本题考查的是一次函数的综合,难度较大,涉及到了三角形边的性质、两点间的距离公式和等腰三角形等相关知识点,需要熟练掌握.
25、(1)2000(2)(3)500(4)32万
【解析】
(1)由A组人数及其所占百分比可得总人数;
(2)用360°乘以对应比例即可得;
(3)用总人数乘以D所占百分比即可;
(4)利用样本估计总体思想求解可得.
【详解】
(1)本次接受调查的市民共有:(人);
(2)扇形E角的度数为:
(3)D选项的人数为:
补全条形统计图
(4)估计赞同“选育无絮杨品种,并推广种植”的人数为 (万人)
故估计赞同“选育无絮杨品种,并推广种植”的人数为32万人
本题考查了扇形统计图、条形统计图,观察统计图获得有效信息是解题关键,扇形统计图直接反映部分占总体的百分比大小,条形统计图直接反映部分的具体数据.
26、(1)70;100;(2)详见解析;(3)当0≤t≤400时方式一省钱;当400<t≤1400时,方式二省钱,当t>1400时,方式一省钱,当为400分钟、1400分钟时,两种方式费用相同.
【解析】
(1)根据题意得出表中数据即可;
(2)根据分段计费的费用就可以得出各个时段各种不同的付费方法就可以得出结论;
(3)分别求出几种情况下时x的取值范围,根据x的取值范围即可选择计费方式.
【详解】
解:(1)由题意可得:月主叫时间500分钟时,方式一收费为70元;月主叫时间800分钟时,方式二收费为100元,
故答案为:70;100;
(2)由题意可得:y1(元)的函数关系式为:
;
y2(元)的函数关系式为:
;
(3)①当0≤t≤300时方式一更省钱;
②当300<t≤600时,若两种方式费用相同,则当0.2t﹣30=50,
解得:t=400,
即当t=400,两种方式费用相同,
当300<t≤400时方式一省钱,
当400<t≤600时,方式二省钱;
③当t>600时,若两种方式费用相同,则当0.2t﹣30=0.25t﹣100,
解得:t=1400,
即当t=1400,两种方式费用相同,当600<t≤1400时方式二省钱,
当t>1400时,方式一省钱;
综上所述,当0≤t≤400时方式一省钱;当400<t≤1400时,方式二省钱,当t>1400时,方式一省钱,当为400分钟、1400分钟时,两种方式费用相同.
本题考查了一次函数的应用,难度中等.得到两种计费方式的关系式是解决本题的关键,注意在列式时应保证单位的统一.
题号
一
二
三
四
五
总分
得分
月使用费/元
主叫限定时间/分钟
主叫超时费(元/分钟)
方式一
30
600
0.20
方式二
50
600
0.25
月主叫时间500分钟
月主叫时间800分钟
方式一收费/元
130
方式二收费/元
50
广东省清远市英德市2024-2025学年九上数学开学教学质量检测试题【含答案】: 这是一份广东省清远市英德市2024-2025学年九上数学开学教学质量检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
广东省广州市2024年数学九上开学检测模拟试题【含答案】: 这是一份广东省广州市2024年数学九上开学检测模拟试题【含答案】,共30页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年广东省阳江地区九上数学开学质量检测模拟试题【含答案】: 这是一份2024年广东省阳江地区九上数学开学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。