|试卷下载
终身会员
搜索
    上传资料 赚现金
    广东省佛山市顺德区龙江镇2024-2025学年数学九上开学质量跟踪监视试题【含答案】
    立即下载
    加入资料篮
    广东省佛山市顺德区龙江镇2024-2025学年数学九上开学质量跟踪监视试题【含答案】01
    广东省佛山市顺德区龙江镇2024-2025学年数学九上开学质量跟踪监视试题【含答案】02
    广东省佛山市顺德区龙江镇2024-2025学年数学九上开学质量跟踪监视试题【含答案】03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广东省佛山市顺德区龙江镇2024-2025学年数学九上开学质量跟踪监视试题【含答案】

    展开
    这是一份广东省佛山市顺德区龙江镇2024-2025学年数学九上开学质量跟踪监视试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,已知正比例函数与一次函数的图象交于点P.下面有四个结论:①k>0;②b>0;③当x>0时,>0;④当x<-2时,kx>-x+b.其中正确的是( )
    A.①③B.②③C.③④D.①④
    2、(4分)平行四边形的一个内角为50°,它的相邻的一个内角等于( )
    A.40°B.50°C.130°D.150°
    3、(4分)直角三角形的两条直角边分别是6,8,则此直角三角形三条中线的和是( )
    A.B.
    C.D.
    4、(4分)若分式有意义,则x的取值范围是( )
    A.x=1B.x≠1C.x>1D.x<1
    5、(4分)与去年同期相比,我国石油进口量增长了,而单价增长了,总费用增长了,则( )
    A.5B.10C.15D.20
    6、(4分)函数y=中,自变量x的取值范围是( )
    A.x≥1B.x>1C.x≥1且x≠2D.x≠2
    7、(4分)下列二次根式中,是最简二次根式的是( )
    A.B.C.D.
    8、(4分)如图,▱ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是( )
    A.6B.8C.10D.12
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式kx+6>x+b的解集是_____.
    10、(4分)不等式组的解集为_____.
    11、(4分)已知中,,点为边的中点,若,则长为__________.
    12、(4分)如图,在中,已知,,分别为,,的中点,且,则图中阴影部分的面积等于__.
    13、(4分)A、B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回,返回途中与乙车相遇。如图是它们离A城的距离(km)与行驶时间(h)之间的函数图象。当它们行驶7(h)时,两车相遇,则乙车速度的速度为____________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在“飞镖形”中,、、、分别是、、、的中点.
    (1)求证:四边形是平行四边形;
    (2)若,那么四边形是什么四边形?
    15、(8分)小聪和小明沿同一条路同时从学校出发到某超市购物,学校与超市的路程是4千米.小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达超市.图中折线O﹣A﹣B﹣C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:
    (1)小聪在超市购物的时间为 分钟,小聪返回学校的速度为 千米/分钟;
    (2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系式;
    (3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?
    16、(8分)如图,将等腰△ABC绕顶点B逆时针方向旋转40°得到△A1BC1,AB与A1C1相交于点D,AC与A1C1、BC1分别交于点E、F.
    求证:ΔBCF≌ΔBA1D.
    当∠C=40°时,请你证明四边形A1BCE是菱形.
    17、(10分)如图分别是的网格,网格中每个小正方形的边长均为1,线段AB的端点在小正方形的顶点上,请在以下图中各画一个图形,所画图形各顶点必须在小正方形的顶点上,并且分别满足以下要求:
    (1)在下图中画一个以线段AB为一边的直角,且的面积为2;
    (2)在下图中画一个以线段AB为一边的四边形ABDE,使四边形ABDE是中心对称图形且四边形ABDE的面积为1.连接AD,请直接写出线段AD的长.线段AD的长是________
    18、(10分)黄石市在创建国家级文明卫生城市中,绿化档次不断提升.某校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.
    (1)求A种,B种树木每棵各多少元;
    (2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在中,,为的中线,过点作于点,过点作的平行线,交的延长线于点,在的延长线上截取,连接、.若,,则________.
    20、(4分)在△ABC中,AB=,AC=5,若BC边上的高等于3,则BC边的长为_____.
    21、(4分)使得分式值为零的x的值是_________;
    22、(4分)已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所能取到的整数值为________.
    23、(4分)如图,在中,,底边在轴正半轴上,点在第一象限,延长交轴负半轴于点,延长到点,使,若双曲线经过点,则的面积为________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)解方程组:.
    25、(10分)先化简,再求值:
    (x﹣1+)÷,其中x的值从不等式组的整数解中选取.
    26、(12分)如图,在菱形中,,点将对角线三等分,且,连接.
    (1)求证:四边形为菱形
    (2)求菱形的面积;
    (3)若是菱形的边上的点,则满足的点的个数是______个.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    根据正比例函数和一次函数的性质判断即可.
    【详解】
    解:∵直线y1=kx经过第一、三象限,
    ∴k>0,故①正确;
    ∵y2=-x+b与y轴交点在负半轴,
    ∴b<0,故②错误;
    ∵正比例函数y1=kx经过原点,且y随x的增大而增大,
    ∴当x>0时,y1>0;故③正确;
    当x<-2时,正比例函数y1=kx在一次函数y2=-x+b图象的下方,即kx<-x+b,故④错误.
    故选:A.
    本题考查了一次函数与一元一次不等式,关键是根据正比例函数和一次函数的性质判断.
    2、C
    【解析】
    利用平行四边形的邻角互补进而得出答案.
    【详解】
    解:∵平行四边形的一个内角为50°,邻角互补,
    ∴它的相邻的一个内角等于180°-50°=130°.
    故选:C.
    此题主要考查了平行四边形的性质,熟记平行四边形的邻角互补关系是解题关键.
    3、C
    【解析】
    利用勾股定理,根据中线的定义计算即可.
    【详解】
    解:∵直角三角形的两条直角边分别是6,8,
    ∴斜边=10,
    ∴此直角三角形三条中线的和= ,
    故选:C.
    此题考查了勾股定理的运用以及中线的定义,比较基础,注意数据的计算.
    4、B
    【解析】
    根据分式有意义的条件即可求出答案.
    【详解】
    由分式有意义的条件可知:x-1≠0,
    ∴x≠1,
    故选:B.
    本题考查分式有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.
    5、B
    【解析】
    设去年的石油进口量是x、单价是y,则今年我国石油进口量是(1+a%)x,单价是(1+)y.根据“总费用增长了15.5%”列出方程并解答.
    【详解】
    解:设去年的石油进口量是x、单价是y,则今年我国石油进口量是(1+a%)x,单价是(1+)y,
    由题意得:(1+a%)x•(1+)y=xy(1+15.5%)
    解得a=10(舍去负值)
    故选:B.
    本题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.
    6、C
    【解析】
    试题分析:依题意得:x﹣1≥0且x﹣1≠0,
    解得x≥1且x≠1.
    故选C.
    考点:函数自变量的取值范围.
    7、D
    【解析】
    根据最简二次根式的概念即可求出答案.
    【详解】
    解:(A)原式=2,故A不是最简二次根式;
    (B)原式=4,故B不是最简二次根式;
    (C)原式=,故C不是最简二次根式;
    故选:D.
    本题考查最简二次根式,解题的关键是正确理解最简二次根式,本题属于基础题型.
    8、C
    【解析】
    由平行四边形的性质得出DC=AB=4,AD=BC=1,由线段垂直平分线的性质得出AE=CE,得出△CDE的周长=AD+DC,即可得出结果.
    【详解】
    ∵四边形ABCD是平行四边形,∴DC=AB=4,AD=BC=1.
    ∵AC的垂直平分线交AD于点E,∴AE=CE,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=1+4=2.
    故选C.
    本题考查了平行四边形的性质、线段垂直平分线的性质、三角形周长的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、x<1
    【解析】
    观察函数图象得到当x<1时,函数y=kx+6的图象都在y=x+b的图象上方,所以关于x的不等式kx+6>x+b的解集为x<1.
    【详解】
    由图象可知,当x<1时,有kx+6>x+b,
    当x>1时,有kx+6<x+b,
    所以,填x<1
    本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
    10、1<x≤2
    【解析】
    解:,
    解不等式①,得x>1.
    解不等式②,得x≤2,
    故不等式组的解集为1<x≤2.
    故答案为1<x≤2.
    11、
    【解析】
    根据直角三角形斜边上的中线等于斜边的一半解答.
    【详解】
    ∵∠ACB=90°,D为AB的中点,
    ∴AB=2CD=1,
    故答案为:1.
    本题考查的是直角三角形的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.
    12、2
    【解析】
    E是AD的中点S△BDE=S△ABD,S△CDE=S△ACDS△BCE=S△ABC=4;
    F为CE中点S△BEF=S△BCE=.
    【详解】
    解:∵E是AD的中点,∴S△BDE=S△ABD,S△CDE=S△ACD,∴S△BDE + S△CDE =S△ABC= (cm2),即S△BCE=4(cm2). ∵F为CE中点,∴S△BEF=S△BCE=(cm2).故答案为2.
    本题主要考查了三角形中线的性质,熟知三角形的中线将三角形分成面积相等的两部分是解题关键.
    13、75千米/小时
    【解析】
    甲返程的速度为:600÷(14−6)=75km/h,设已车的速度为x,由题意得:600=7x+75,即可求解.
    【详解】
    解:甲返程的速度为:600÷(14−6)=75km/h,
    设乙车的速度为x,
    由题意得:600=7x+75,
    解得:x=75,
    故答案为75千米/小时.
    本题考查由图象理解对应函数关系及其实际意义,应把所有可能出现的情况考虑清楚.
    三、解答题(本大题共5个小题,共48分)
    14、 (1)见解析;(2)见解析.
    【解析】
    (1)连接AC,根据三角形的中位线的性质即可求解;
    (2)根据菱形的判定定理即可求解.
    【详解】
    (1)证明:连接.
    ∵、、、分别是、、、的中点,
    ∴、分别是、的中位线,
    ∴,,,,
    ∴,,
    ∴四边形是平行四边形.
    (2)解:四边形是菱形.理由如下:
    ∵,,,
    ∴,又由(1)可知四边形是平行四边形,
    ∴四边形是菱形.
    此题主要考查平行四边形的判定与性质,解题的关键是熟知菱形的判定定理与平行四边形的的判定与性质.
    15、(1)15,;(2)s=t;(2)2千米
    【解析】
    (1)根据购物时间=离开时间﹣到达时间即可求出小聪在超市购物的时间;再根据速度=路程÷时间即可算出小聪返回学校的速度;
    (2)根据点的坐标利用待定系数法即可求出小明离开学校的路程s与所经过的时间t之间的函数关系式;
    (2)根据点的坐标利用待定系数法即可求出当20≤s≤45时小聪离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系式,令两函数关系式相等即可得出关于t的一元一次方程,解之即可求出t值,再将其代入任意一函数解析式求出s值即可.
    【详解】
    解:(1)20﹣15=15(分钟);
    4÷(45﹣20)=(千米/分钟).
    故答案为:15;.
    (2)设小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系式为s=mt+n,
    将(0,0)、(45,4)代入s=mt+n中,
    ,解得:,
    ∴s=t.
    ∴小明离开学校的路程s与所经过的时间t之间的函数关系式为s=t.
    (2)当20≤s≤45时,设小聪离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系式为s=kt+b,将(20,4)、(45,0)代入s=kt+b,
    ,解得:,
    ∴s=﹣t+1.
    令s=t=﹣t+1,
    解得:t=,
    ∴s=t=×=2.
    答:当小聪与小明迎面相遇时,他们离学校的路程是2千米.
    本题考查了一次函数的应用以及待定系数法求一次函数解析式,解题的关键是:(1)根据数量关系列式计算;(2)根据点的坐标利用待定系数法求出函数关系式;(2)根据点的坐标利用待定系数法求出函数关系式.
    16、(1)详见解析;(2)详见解析.
    【解析】
    试题分析:(1)根据旋转的性质,得出A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,再根据ASA即可判定△BCF≌△BA1D;
    (2)根据∠C=40°,△ABC是等腰三角形,即可得出∠A=∠C1=∠C=40°,进而得到∠C1=∠CBF,∠A=∠A1BD,由此可判定A1E∥BC,A1B∥CE,进而得到四边形A1BCE是平行四边形,最后根据A1B=BC,即可判定四边形A1BCE是菱形.
    (1)∵△ABC是等腰三角形,
    ∴AB=BC,∠A=∠C,
    ∵将等腰△ABC绕顶点B逆时针方向旋转40度到△A1BC1的位置,
    ∴A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,
    在△BCF与△BA1D中,,
    ∴△BCF≌△BA1D(ASA);
    (2)∵∠C=40°,△ABC是等腰三角形,
    ∴∠A=∠C1=∠C=40°,
    ∴∠C1=∠CBF=40°,∠A=∠A1BD=40°,
    ∴A1E∥BC,A1B∥CE,
    ∴四边形A1BCE是平行四边形,
    ∵A1B=BC,
    ∴四边形A1BCE是菱形.
    17、(1)见解析;(2)见解析,AD=.
    【解析】
    (1)根据正方形的性质和AB的长度作图即可;
    (2)利用数形结合的思想即可解决问题,由勾股定理可求出AD的长度.
    【详解】
    (1)如图,
    (2)如图,

    AD==.
    本题考查作图-应用与设计、勾股定理、平行四边形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题.
    18、 (1) A种树每棵2元,B种树每棵80元;(2) 当购买A种树木1棵,B种树木25棵时,所需费用最少,最少为8550元.
    【解析】
    (1)设A种树每棵x元,B种树每棵y元,根据“购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元”列出方程组并解答;
    (2)设购买A种树木为x棵,则购买B种树木为(2-x)棵,根据“购买A种树木的数量不少于B种树木数量的3倍”列出不等式并求得x的取值范围,结合实际付款总金额=0.9(A种树的金额+B种树的金额)进行解答.
    【详解】
    解:(1)设A种树木每棵x元,B种树木每棵y元,根据题意,得
    ,解得 ,
    答:A种树木每棵2元,B种树木每棵80元.
    (2)设购买A种树木x棵,则B种树木(2-x)棵,则x≥3(2-x).解得x≥1.
    又2-x≥0,解得x≤2.∴1≤x≤2.
    设实际付款总额是y元,则y=0.9[2x+80(2-x)].
    即y=18x+7 3.
    ∵18>0,y随x增大而增大,∴当x=1时,y最小为18×1+7 3=8 550(元).
    答:当购买A种树木1棵,B种树木25棵时,所需费用最少,为8 550元.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、5
    【解析】
    首先可判断四边形BGFD是平行四边形,再由直角三角形斜边中线等于斜边一半,可得BD=FD,则可判断四边形BGFD是菱形,设GF=x,则AF=13-x,AC=2x,在Rt△ACF中利用勾股定理可求出x的值.
    【详解】
    解:∵,,
    ∴四边形是平行四边形,
    ∵,
    ∴,
    又∵点是中点,
    ∴,
    ∴四边形是菱形,
    设,则,,
    ∵在中,,
    ∴,即,
    解得:,
    即.
    故答案是:5.
    本题考查了菱形的判定与性质、勾股定理及直角三角形的斜边中线的性质,解答本题的关键是判断出四边形BGFD是菱形.
    20、9或1
    【解析】
    【分析】△ABC中,∠ACB分锐角和钝角两种:
    ①如图1,∠ACB是锐角时,根据勾股定理计算BD和CD的长可得BC的值;
    ②如图2,∠ACB是钝角时,同理得:CD=4,BD=5,根据BC=BD﹣CD代入可得结论.
    【详解】有两种情况:
    ①如图1,∵AD是△ABC的高,
    ∴∠ADB=∠ADC=90°,
    由勾股定理得:BD==5,
    CD==4,
    ∴BC=BD+CD=5+4=9;
    ②如图2,同理得:CD=4,BD=5,
    ∴BC=BD﹣CD=5﹣4=1,
    综上所述,BC的长为9或1;
    故答案为:9或1.
    【点睛】本题考查了勾股定理的运用,熟练掌握勾股定理是关键,并注意运用了分类讨论的思想解决问题.
    21、2
    【解析】
    根据分式的性质,要使分式有意义,则必须分母不能为0,要使分式为零,则只有分子为0,因此计算即可.
    【详解】
    解:要使分式有意义则 ,即
    要使分式为零,则 ,即
    综上可得
    故答案为2
    本题主要考查分式的性质,关键在于分式的分母不能为0.
    22、-2
    【解析】
    试题分析:根据题意可得2k+3>2,k<2,解得﹣<k<2.因k为整数,所以k=﹣2.
    考点:一次函数图象与系数的关系.
    23、
    【解析】
    连接BE,先根据题意证明BE⊥BC,进而判定△CBE∽△BOD,根据相似比得出BC×OD=OB×BE的值即为|k|的值,再由三角形面积公式即可求解.
    【详解】
    解:如图,连接,
    ∵等腰三角形中,,
    ∴,
    ∵,
    ∴,
    ∴,
    又∵,
    ∴,即,
    ∴,
    又∵,
    ∴,
    ∴,即,
    又∵双曲线的图象过点,
    ∴,
    ∴的面积为.
    故答案为:.
    此题主要考查了反比例函数比例系数k的几何意义,解题时注意:过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,体现了数形结合的思想.
    二、解答题(本大题共3个小题,共30分)
    24、,,,.
    【解析】
    由①得(x﹣y)(x﹣2y)=0,即x﹣y=0,x﹣2y=0,然后将原方程组化为或求解即可.
    【详解】

    由①,得(x﹣y)(x﹣2y)=0,
    ∴x﹣y=0,x﹣2y=0,
    所以原方程组可以变形为或,
    解方程组,得,;
    解方程组,得,,
    所以原方程组的解为: ,,,.
    本题考查了二元二次方程组的解法,解题思路类似与二元一次方程组,通过代入消元法转化为一元二次方程求解即可.
    25、原式=
    【解析】
    试题分析:先根据分式的混合运算顺序和法则化简原式,再求出不等式组的整数解,由分式有意义得出符合条件的x的值,代入求解可得.
    试题解析:原式= ===
    解不等式组得:﹣1≤x<,∴不等式组的整数解有﹣1、1、1、2,∵不等式有意义时x≠±1、1,∴x=2,则原式==1.
    点睛:本题主要考查分式的化简求值及解一元一次不等式组的能力,熟练掌握分式的混合运算顺序和法则及解不等式组的能力、分式有意义的条件是解题的关键.
    26、(1)见解析;(2);(3)1
    【解析】
    (1)根据题意证明△AED≌△AEB≌△CFD≌△CFB,得到四边相等即可证明是菱形;
    (2)求出菱形的对角线的长,利用菱形的面积等于对角线乘积的一半解决问题即可.
    (3)不妨假设点P在线段AD上,作点E关于AD的对称点E′,连接FE′交AD于点P,此时PE+PF的值最小.求出PE+PF的最值,判断出在线段AD上存在两个点P满足条件,由此即可判断.
    【详解】
    (1)∵四边形ABCD是菱形,
    ∴AD≡AB=CD=CB,∠DAE=∠BAE=∠DCF=∠BCF,
    ∴△AED≌△AEB≌△CFD≌△CFB(SAS)
    ∴DE=BE=DF=BF,
    ∴四边形DEBF为菱形.
    (2)连接DB,交AC于O,
    ∵四边形ABCD是菱形,
    ∴DB⊥AC,,
    又∵AE=EF=FC=2,
    ∴AO=3,AD=2DO,
    ∴,∴,

    (3)不妨假设点P在线段AD上,作点E关于AD的对称点E′,连接FE′交AD于点P,此时PE+PF的值最小.
    易知PE+PF的最小值=2
    当点P由A运动到D时,PE+PF的值由最大值6减小到2再增加到4,
    ∵PE+PE=,2<<4,
    ∴线段AD上存在两个点P,满足PE+PF=
    ∴根据对称性可知:菱形ABCD的边上的存在1个点P满足条件.
    故答案为1.
    本题考查菱形的判定和性质,全等三角形的判定和性质,直角三角形的性质,轴对称等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    题号





    总分
    得分
    批阅人
    相关试卷

    广东省广州市东圃中学2024-2025学年数学九上开学质量跟踪监视模拟试题【含答案】: 这是一份广东省广州市东圃中学2024-2025学年数学九上开学质量跟踪监视模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年浙江杭州市风帆中学九上数学开学质量跟踪监视试题【含答案】: 这是一份2024-2025学年浙江杭州市风帆中学九上数学开学质量跟踪监视试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年浙江地区九上数学开学质量跟踪监视模拟试题【含答案】: 这是一份2024-2025学年浙江地区九上数学开学质量跟踪监视模拟试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map