广东省东莞市(莞外、松山湖实验)2024年九上数学开学复习检测试题【含答案】
展开
这是一份广东省东莞市(莞外、松山湖实验)2024年九上数学开学复习检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)某中学46名女生体育中考立定跳远成绩如下表:
这些立定跳远成绩的中位数和众数分别是
A.185,170B.180,170C.7.5,16D.185,16
2、(4分)菱形的两条对角线长分别是6cm和8cm,则它的面积是( )
A.6cm2B.12cm2C.24cm2D.48cm2
3、(4分)以下列各组数为边长,能组成直角三角形的是( )
A.1,2,3B.2,3,4C.3,4,6D.1,,2
4、(4分)若一个三角形的三边长为,则使得此三角形是直角三角形的的值是( )
A.B.C.D.或
5、(4分)如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结若,,则的度数为
A.B.C.D.
6、(4分)从甲、乙、丙、丁四位同学中选派两位选手参加数学竞赛,老师对他们五次数学测验成绩进行统计,得出他们的平均分均为85分,且,,,.根据统计结果,最适合参加竞赛的两位同学是( )
A.甲、乙B.丙、丁C.甲、丁D.乙、丙
7、(4分)小明到单位附近的加油站加油,如图是小明所用的加油机上的数据显示牌,则数据中的变量有( )
A.金额B.数量C.单价D.金额和数量
8、(4分)下列各式由左到右的变形中,属于分解因式的是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一次函数y=﹣x,函数值y随x的增大而_____.
10、(4分)如图,在平面直角坐标系中,已知A(﹣2,1),B(1,0),将线段AB绕着点B顺时针旋转90°得到线段BA′,则A′的坐标为_____.
11、(4分)已知:,则______.
12、(4分)如图,在△ABC中,∠BAC=60°,AD平分∠BAC,若AD=6,DE⊥AB,则DE的长为_____________.
13、(4分)如图,正方形的两边、分别在轴、轴上,点在边上,以为中心,把旋转,则旋转后点的对应点的坐标是________.
三、解答题(本大题共5个小题,共48分)
14、(12分)(题文)如图,四边形ABCD中,AB//CD,AC平分∠BAD,CE//AD交AB于E.
求证:四边形AECD是菱形.
15、(8分)图①,图②都是由一个正方形和一个等腰直角三角形组成的图形.
(1)用实线把图①分割成六个全等图形;
(2)用实线把图②分割成四个全等图形.
16、(8分)如图,,,垂足为E,,求的度数.
17、(10分)如图1,矩形顶点的坐标为,定点的坐标为.动点从点出发,以每秒个单位长度的速度沿轴的正方向匀速运动,动点从点出发,以每秒个单位长度的速度沿轴的负方向匀速运动,两点同时运动,相遇时停止.在运动过程中,以为斜边在轴上方作等腰直角三角形,设运动时间为秒,和矩形重叠部分的面积为,关于的函数如图2所示(其中,,时,函数的解析式不同).
当 时,的边经过点;
求关于的函数解析式,并写出的取值范围.
18、(10分)如图,直线l:y1=﹣x﹣1与y轴交于点A,一次函数y2=x+3图象与y轴交于点B,与直线l交于点C,
(1)画出一次函数y2=x+3的图象;
(2)求点C坐标;
(3)如果y1>y2,那么x的取值范围是______.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若是关于的方程的一个根,则方程的另一个根是_________.
20、(4分)矩形ABCD中,对角线AC、BD交于点O,于,若,,则____.
21、(4分)如图,在Rt△ABC中,D是斜边AB的中点,AB=2,则CD的长为_____.
22、(4分)若正多边形的一个内角等于150°,则这个正多边形的边数是______.
23、(4分)使得二次根式有意义的x的取值范围是 .
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,直线和相交于点C,分别交x轴于点A和点B点P为射线BC上的一点。
(1)如图1,点D是直线CB上一动点,连接OD,将沿OD翻折,点C的对应点为,连接,并取的中点F,连接PF,当四边形AOCP的面积等于时,求PF的最大值;
(2)如图2,将直线AC绕点O顺时针方向旋转α度,分别与x轴和直线BC相交于点S和点R,当是等腰三角形时,直接写出α的度数.
25、(10分)(1)已知x=+1,y=-1,求x2+y2的值.
(2)解一元二次方程:3x2+2x﹣2=1.
26、(12分)已知:如图,正比例函数y=kx的图象经过点A,
(1)请你求出该正比例函数的解析式;
(2)若这个函数的图象还经过点B(m,m+3),请你求出m的值;
(3)请你判断点P(﹣,1)是否在这个函数的图象上,为什么?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据中位数和众数的定义求解即可.
【详解】
由上表可得
中位数是180,众数是170
故答案为:B.
本题考查了中位数和众数的问题,掌握中位数和众数的定义是解题的关键.
2、C
【解析】
已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.
【详解】
根据对角线的长可以求得菱形的面积,
根据S=ab=×6cm×8cm=14cm1.
故选:C.
考查菱形的面积公式,熟练掌握菱形面积的两种计算方法是解题的关键.
3、D
【解析】
根据勾股定理的逆定理,只要两边的平方和等于第三边的平方即可构成直角三角形.
【详解】
解:A、12+22=5≠32,故不符合题意;
B、22+32=13≠42,故不符合题意;
C、32+42=25≠62,故不符合题意;
D、12+=4=22,符合题意.
故选D.
本题主要考查了勾股定理的逆定理,已知三条线段的长,判断是否能构成直角三角形的三边,简便的方法是:判断两个较小的数的平方和是否等于最大数的平方即可.
4、D
【解析】
根据勾股定理即可求解.
【详解】
当4为斜边时,x=
当x为斜边是,x=
故选D.
此题主要考查勾股定理的应用,解题的关键是根据题意分情况讨论.
5、B
【解析】
【分析】直接利用三角形内角和定理得出的度数,再利用三角形中位线定理结合平行线的性质得出答案.
【详解】,,
,
▱ABCD的对角线AC与BD相交于点O,E是边CD的中点,
是的中位线,
,
,
故选B.
【点睛】本题主要考查了三角形内角和定理、三角形中位线定理等知识,得出EO是的中位线是解题关键.
6、C
【解析】
方差反映了一组数据的波动大小,方差越大,波动性越大,方差越小,波动越小.选择方差较小的两位.
【详解】
解:从四个方差看,甲,丁的方差在四个同学中是较小的,方差小成绩发挥稳定,所以应选他们两人去参加比赛.
故选:C.
本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
7、D
【解析】
根据常量与变量的定义即可判断.
【详解】
常量是固定不变的量,变量是变化的量,
单价是不变的量,而金额是随着数量的变化而变化,
故选:D.
本题考查常量与变量,解题的关键是正确理解常量与变量,本题属于基础题型.
8、C
【解析】
根据题中“属于分解因式的是”可知,本题考查多项式的因式分解的判断,根据因式分解的概念,运用因式分解是把多项式分解成若干个整式相乘的形式,进行分析判断.
【详解】
A. 属于整式乘法的变形.
B. 不符合因式分解概念中若干个整式相乘的形式.
C. 运用提取公因式法,把多项式分解成了5x与(2x-1)两个整式相乘的形式.
D. 不符合因式分解概念中若干个整式相乘的形式.
故应选C
本题解题关键:理解因式分解的概念是把多项式分解成若干个整式相乘的形式,注意的是相乘的形式.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、减小
【解析】
根据其图象沿横轴的正方向的增减趋势,判断其增减性.
【详解】
解:因为一次函数y=中,k=
所以函数值y随x的增大而减小.
故答案是:减小.
考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.
10、 (2,3)
【解析】
作AC⊥x轴于C,作A′C′⊥x轴,垂足分别为C、C′,证明△ABC≌△BA′C′,可得OC′=OB+BC′=1+1=2,A′C′=BC=3,可得结果.
【详解】
如图,作AC⊥x轴于C,作A′C′⊥x轴,垂足分别为C、C′,
∵点A、B的坐标分别为(-2,1)、(1,0),
∴AC=2,BC=2+1=3,
∵∠ABA′=90°,
∴ABC+∠A′BC′=90°,
∵∠BAC+∠ABC=90°,
∴∠BAC=∠A′BC′,
∵BA=BA′,∠ACB=∠BC′A′,
∴△ABC≌△BA′C′,
∴OC′=OB+BC′=1+1=2,A′C′=BC=3,
∴点A′的坐标为(2,3).
故答案为(2,3).
此题考查旋转的性质,三角形全等的判定和性质,点的坐标的确定.解决问题的关键是作辅助线构造全等三角形.
11、
【解析】
首先根据二次根式有意义的条件和分式有意义的条件列出不等式,求出x的值,然后可得y的值,易求结果.
【详解】
解:由题意得:,
∴x=-2,
∴y=3,
∴,
故答案为:.
本题考查了二次根式和分式的性质,根据他们各自的性质求出x,y的值是解题关键.
12、1
【解析】
分析:根据角平分线的性质求出∠DAC=10°,根据直角三角形的性质得出CD的长度,最后根据角平分线的性质得出DE的长度.
详解:∵∠BAC=60°,AD平分∠BAC, ∴∠DAC=10°, ∵AD=6, ∴CD=1,
又∵DE⊥AB, ∴DE=DC=1.
点睛:本题主要考查的是直角三角形的性质以及角平分线的性质,属于基础题型.合理利用角平分线的性质是解题的关键.
13、或
【解析】
分逆时针旋转和顺时针旋转两种情况考虑:①顺时针旋转时,由点D的坐标利用正方形的性质可得出正方形的边长以及BD的长度,由此可得出点D′的坐标;②逆时针旋转时,找出点B′落在y轴正半轴上,根据正方形的边长以及BD的长度即可得出点D′的坐标.综上即可得出结论.
【详解】
解:分逆时针旋转和顺时针旋转两种情况(如图所示):
①顺时针旋转时,点B′与点O重合,
∵点D(4,3),四边形OABC为正方形,
∴OA=BC=4,BD=1,
∴点D′的坐标为(-1,0);
②逆时针旋转时,点B′落在y轴正半轴上,
∵OC=BC=4,BD=1,
∴点B′的坐标为(0,8),点D′的坐标为(1,8).
故答案为:(-1,0)或(1,8).
本题考查了正方形的性质,旋转的性质,以及坐标与图形变化中的旋转,分逆时针旋转和顺时针旋转两种情况考虑是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、证明见解析.
【解析】证明:∵AB∥CD,CE∥AD,
∴四边形AECD是平行四边形.
∵AC平分∠BAD,
∴∠BAC=∠DAC,
又∵AB∥CD,
∴∠ACD=∠BAC=∠DAC,
∴AD=DC,
∴四边形AECD是菱形.
15、 (1)见解析;(2)见解析.
【解析】
设正方形的面积为2,则等腰直角三角形的面积为1,
(1)根据题意,分成的每一个图形的面积为 ,分成六等腰个直角三角形即可;
(2)根据题意,分成的每一个图形的面积为 ,分成四个直角梯形即可.
【详解】
解:如图所示:
本题考查复杂作图,根据面积确定出分成的每一个图形的面积是解题的关键,难度中等,但不容易考虑.
16、
【解析】
直接利用平行线的性质得出∠A+∠C=180°,进而得出∠C的度数,再利用垂直的定义得出∠C+∠D=90°,即可得出答案.
【详解】
,已知
两直线平行,同旁内角互补,
,已知
等量代换
又,已知
,垂直定义
直角三角形的两个锐角互余
等量代换
本题考查了平行线的性质以及垂线的定义,得出∠C的度数是解题关键.
17、(1)1;(2)S=
【解析】
(1)PQR的边QR经过点B时, 构成等腰直角三角形,则由AB=AQ,列方程求出t值即可.
(2)在图形运动的过程中,有三种情形,当1<t≤2时,当1<t≤2时,当2<t≤4时,进行分类讨论求出答案.
【详解】
解:PQR的边QR经过点B时, 构成等腰直角三角形;
AB=AQ,即3=4-t
①当时,如图
设交于点,过点作于点
则
②当时,如图
设交于点交于点
则,
③当时,如图
设与交于点,则
综上所述,关于的函数关系式为:S=
此题属于四边形综合题.考查了矩形的性质、等腰直角三角形的性质、相似三角形的判定与性质以及动点问题.注意掌握分类讨论思想的应用是解此题的关键.
18、 (1)画图见解析;(1)点C坐标为(﹣1,);(3)x<﹣1.
【解析】
(1)分别求出一次函数y1=x+3与两坐标轴的交点,再过这两个交点画直线即可;
(1)将两个一次函数的解析式联立得到方程组,解方程组即可求出点C坐标;
(3)根据图象,找出y1落在y1上方的部分对应的自变量的取值范围即可.
【详解】
解:(1)∵y1=x+3,
∴当y1=0时,x+3=0,解得x=﹣4,
当x=0时,y1=3,
∴直线y1=x+3与x轴的交点为(﹣4,0),与y轴的交点B的坐标为(0,3).
图象如下所示:
(1)解方程组,得,
则点C坐标为(﹣1,);
(3)如果y1>y1,那么x的取值范围是x<﹣1.
故答案为(1)画图见解析;(1)点C坐标为(﹣1,);(3)x<﹣1.
本题考查了一次函数的图象与性质,两直线交点坐标的求法,一次函数与一元一次不等式,需熟练掌握.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
设另一个根为y,利用两根之和,即可解决问题.
【详解】
解:设方程的另一个根为y,
则y+ =4 ,
解得y=,
即方程的另一个根为,
故答案为:.
题考查根与系数的关系、一元二次方程的应用等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
20、1或
【解析】
试题解析:如图(一)所示,
AB是矩形较短边时,
∵矩形ABCD,
∴OA=OD=BD;
∵OE:ED=1:3,
∴可设OE=x,ED=3x,则OD=2x
∵AE⊥BD,AE=,
∴在Rt△OEA中,x2+()2=(2x)2,
∴x=1
∴BD=1.
当AB是矩形较长边时,如图(二)所示,
∵OE:ED=1:3,
∴设OE=x,则ED=3x,
∵OA=OD,
∴OA=1x,
在Rt△AOE中,x2+()2=(1x)2,
∴x=,
∴BD=8x=8×=.
综上,BD的长为1或.
21、1
【解析】
根据在直角三角形中,斜边上的中线等于斜边的一半解答.
【详解】
解:在Rt△ABC中,D是斜边AB的中点,
∴CD=AB=1,
故答案为:1.
本题考查的是直角三角形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.
22、1.
【解析】
首先根据求出外角度数,再利用外角和定理求出边数.
【详解】
正多边形的一个内角等于,
它的外角是:,
它的边数是:.
故答案为:1.
此题主要考查了多边形的外角与内角,做此类题目,首先求出正多边形的外角度数,再利用外角和定理求出求边数.
23、x≥﹣
【解析】
试题分析:根据被开方数大于等于0,可得2x+1≥0,解得x≥﹣.
考点:二次根式有意义的条件
二、解答题(本大题共3个小题,共30分)
24、(1)PF的最大值是;(2)的度数:,,,.
【解析】
(1)设P(m,-m+6),连接OP.根据S四边形AOCP=S△AOP+S△OCP=,构建方程求出点P坐标,取OB的中点Q,连接QF,QP,求出FQ,PQ,根据PF≤PQ+QF求解即可.
(2)分四种情形:①如图2-1中,当RS=RB时,作OM⊥AC于M.②如图2-2中,当BS=BR时,③如图2-3中,当SR=SB时,④如图2-4中,当BR=BS时,分别求解即可解决问题.
【详解】
解:(1)在中,当时,;
当时,﹒
∴,
设,连接OP
∴
∴
∴ ∴
取OB的中点Q,连接FQ,PQ
在中,当时,
∴ ∴
又∵点F是的中点,
∴
∵
所以PF的最大值是
(2)①如图2-1中,当RS=RB时,作OM⊥AC于M.
∵tan∠OAC==,
∴∠OAC=60°,
∵OC=OB=6,
∴∠OBC=∠OCB=45°,
∵∠OM′S=∠BRS=90°,
∴OM′∥BR,
∴∠AOM′=∠OBC=45°,
∵∠AOM=30°,
∴α=45°-30°=15°.
②如图2-2中,当BS=BR时,易知∠BSR=22.5°,
∴∠SOM′=90°-22.5°=67.5°,
∴α=∠MOM′=180°-30°-67.5°=82.5°
③如图2-3中,当SR=SB时,α=180°-30°=150°.
④如图2-4中,当BR=BS时,α=150°+(90°-67.5°)=172.5°.
综上所述,满足条件的α的值为15°或82.5°或150°或172.5°.
本题属于一次函数综合题,考查了旋转变换,四边形的面积,最短问题等知识,解题的关键是学会利用两点之间线段最短解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题.
25、(1)6;(2)x1=,x2=.
【解析】
(1)代入后利用完全平方公式计算;
(2)用公式法求解.
【详解】
(1)x2+y2
=(+1)2+(−1)2
=3+2+3-2
=6;
(2)a=3,b=2,c=-2,
b2-4ac=22-4×3×(-2)=28,
x==,
即x1=,x2=.
本题考查了二次根式与一元二次方程,熟练化简二次根式和解一元二次方程是解题的关键.
26、(1)正比例函数解析式为y=﹣2x;(2)m=﹣1;(3)点P不在这个函数图象上,理由见解析.
【解析】
(1)将点A的坐标代入正比例函数解析式中求出k的值,即可确定出正比例解析式;(2)将点B(m,m+3)代入所求的解析式,即可求得m的值;(3)把x=- 代入所求的解析式,求得y的值,比较即可.
【详解】
(1)由图可知点A(﹣1,2),代入y=kx得:
﹣k=2,k=﹣2,
则正比例函数解析式为y=﹣2x;
(2)将点B(m,m+3)代入y=﹣2x,得:﹣2m=m+3,
解得:m=﹣1;
(3)当x=﹣时,y=﹣2×(﹣)=3≠1,
所以点P不在这个函数图象上.
本题考查了待定系数法求正比例函数解析式,把点的坐标代入函数解析式计算即可.
题号
一
二
三
四
五
总分
得分
跳远成绩
160
170
180
190
200
210
人数
3
16
6
9
8
4
相关试卷
这是一份2024年广东省东莞市长安实验中学数学九上开学统考试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年广东省东莞市长安实验中学数学九上开学调研模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年广东省宝塔实验九上数学开学复习检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。