|试卷下载
搜索
    上传资料 赚现金
    广东省东莞市(莞外、松山湖实验)2022年中考数学全真模拟试题含解析
    立即下载
    加入资料篮
    广东省东莞市(莞外、松山湖实验)2022年中考数学全真模拟试题含解析01
    广东省东莞市(莞外、松山湖实验)2022年中考数学全真模拟试题含解析02
    广东省东莞市(莞外、松山湖实验)2022年中考数学全真模拟试题含解析03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广东省东莞市(莞外、松山湖实验)2022年中考数学全真模拟试题含解析

    展开
    这是一份广东省东莞市(莞外、松山湖实验)2022年中考数学全真模拟试题含解析,共25页。试卷主要包含了如图是反比例函数等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,等边△ABC的边长为4,点D,E分别是BC,AC的中点,动点M从点A向点B匀速运动,同时动点N沿B﹣D﹣E匀速运动,点M,N同时出发且运动速度相同,点M到点B时两点同时停止运动,设点M走过的路程为x,△AMN的面积为y,能大致刻画y与x的函数关系的图象是(  )

    A. B.
    C. D.
    2.一、单选题
    如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=(  )

    A.75° B.80° C.85° D.90°
    3.如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,函数y=(k<0)的图象经过点B,则k的值为(  )

    A.﹣12 B.﹣32 C.32 D.﹣36
    4.不等式2x﹣1<1的解集在数轴上表示正确的是(  )
    A. B.
    C. D.
    5.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是( )
    A. B. C. D.
    6.关于▱ABCD的叙述,不正确的是(  )
    A.若AB⊥BC,则▱ABCD是矩形
    B.若AC⊥BD,则▱ABCD是正方形
    C.若AC=BD,则▱ABCD是矩形
    D.若AB=AD,则▱ABCD是菱形
    7.2017年牡丹区政府工作报告指出:2012年以来牡丹区经济社会发展取得显著成就,综合实力明显提升,地区生产总值由156.3亿元增加到338亿元,年均可比增长11.4%,338亿用科学记数法表示为(  )
    A.3.38×107 B.33.8×109 C.0.338×109 D.3.38×1010
    8.如果与互补,与互余,则与的关系是( )
    A. B.
    C. D.以上都不对
    9.如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为(  )

    A.800sinα米 B.800tanα米 C.米 D.米
    10.如图是反比例函数(k为常数,k≠0)的图象,则一次函数的图象大致是( )

    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等,若等腰直角三角形ABC的直角顶点C在l1上,另两个顶点A,B分别在l3,l2上,则sinα的值是_____.

    12.如图,菱形ABCD中,AB=4,∠C=60°,菱形ABCD在直线l上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过6次这样的操作菱形中心(对角线的交点)O所经过的路径总长为_____.

    13.在△ABC中,∠C=90°,sinA=,BC=4,则AB值是_____.
    14.如图,在平面直角坐标系中,菱形ABCD的顶点A的坐标为(3,0),顶点B在y轴正半轴上,顶点D在x轴负半轴上.若抛物线y=-x2-5x+c经过点B、C,则菱形ABCD的面积为_______.

    15.如图,边长为4的正方形ABCD内接于⊙O,点E是弧AB上的一动点(不与点A、B重合),点F是弧BC上的一点,连接OE,OF,分别与交AB,BC于点G,H,且∠EOF=90°,连接GH,有下列结论:
    ①弧AE=弧BF;②△OGH是等腰直角三角形;③四边形OGBH的面积随着点E位置的变化而变化;④△GBH周长的最小值为4+2.
    其中正确的是_____.(把你认为正确结论的序号都填上)

    16.计算:___________.
    三、解答题(共8题,共72分)
    17.(8分)(阅读)如图1,在等腰△ABC中,AB=AC,AC边上的高为h,M是底边BC上的任意一点,点M到腰AB、AC的距离分别为h1,h1.连接AM.
    ∵ ∴
          
    (思考)在上述问题中,h1,h1与h的数量关系为: .
    (探究)如图1,当点M在BC延长线上时,h1、h1、h之间有怎样的数量关系式?并说明理由.
    (应用)如图3,在平面直角坐标系中有两条直线l1:,l1:y=-3x+3,若l1上的一点M到l1的距离是1,请运用上述结论求出点M的坐标.
    18.(8分). 在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.
    (1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为 ;
    (2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.

    19.(8分)若两个不重合的二次函数图象关于轴对称,则称这两个二次函数为“关于轴对称的二次函数”.
    (1)请写出两个“关于轴对称的二次函数”;
    (2)已知两个二次函数和是“关于轴对称的二次函数”,求函数的顶点坐标(用含的式子表示).
    20.(8分)△ABC在平面直角坐标系中的位置如图所示.
    画出△ABC关于y轴对称的△A1B1C1;将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;观察△A1B1C1和△A2B2C2,它们是否关于某条直线对称?若是,请在图上画出这条对称轴.
    21.(8分)如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合).DE∥AB交AC于点F,CE∥AM,连结AE.
    (1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边形;
    (2)如图2,当点D不与M重合时,(1)中的结论还成立吗?请说明理由.
    (3)如图3,延长BD交AC于点H,若BH⊥AC,且BH=AM.
    ①求∠CAM的度数;
    ②当FH=,DM=4时,求DH的长.

    22.(10分) “垃圾不落地,城市更美丽”.某中学为了了解七年级学生对这一倡议的落实情况,学校安排政教处在七年级学生中随机抽取了部分学生,并针对学生“是否随手丢垃圾”这一情况进行了问卷调查,统计结果为:A为从不随手丢垃圾;B为偶尔随手丢垃圾;C为经常随手丢垃圾三项.要求每位被调查的学生必须从以上三项中选一项且只能选一项.现将调查结果绘制成以下来不辜负不完整的统计图.

    请你根据以上信息,解答下列问题:
    (1)补全上面的条形统计图和扇形统计图;
    (2)所抽取学生“是否随手丢垃圾”情况的众数是   ;
    (3)若该校七年级共有1500名学生,请你估计该年级学生中“经常随手丢垃圾”的学生约有多少人?谈谈你的看法?
    23.(12分)某校师生到距学校20千米的公路旁植树,甲班师生骑自行车先走,45分钟后,乙班师生乘汽车出发,结果两班师生同时到达,已知汽车的速度是自行车速度的2.5倍,求两种车的速度各是多少?
    24.已知,抛物线y=ax2+c过点(-2,2)和点(4,5),点F(0,2)是y 轴上的定点,点B是抛物线上除顶点外的任意一点,直线l:y=kx+b经过点B、F且交x轴于点A.

    (1)求抛物线的解析式;
    (2)①如图1,过点B作BC⊥x轴于点C,连接FC,求证:FC平分∠BFO;
    ②当k= 时,点F是线段AB的中点;
    (3)如图2, M(3,6)是抛物线内部一点,在抛物线上是否存在点B,使△MBF的周长最小?若存在,求出这个最小值及直线l的解析式;若不存在,请说明理由.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    根据题意,将运动过程分成两段.分段讨论求出解析式即可.
    【详解】
    ∵BD=2,∠B=60°,
    ∴点D到AB距离为,
    当0≤x≤2时,
    y=;
    当2≤x≤4时,y=.
    根据函数解析式,A符合条件.
    故选A.
    【点睛】
    本题为动点问题的函数图象,解答关键是找到动点到达临界点前后的一般图形,分类讨论,求出函数关系式.
    2、A
    【解析】
    分析:依据AD是BC边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE平分∠BAC,即可得到∠DAE=5°,再根据△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠EAD+∠ACD=75°.
    详解:∵AD是BC边上的高,∠ABC=60°,
    ∴∠BAD=30°,
    ∵∠BAC=50°,AE平分∠BAC,
    ∴∠BAE=25°,
    ∴∠DAE=30°﹣25°=5°,
    ∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,
    ∴∠EAD+∠ACD=5°+70°=75°,
    故选A.
    点睛:本题考查了三角形内角和定理:三角形内角和为180°.解决问题的关键是三角形外角性质以及角平分线的定义的运用.
    3、B
    【解析】
    解:
    ∵O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,
    ∴OA=5,AB∥OC,
    ∴点B的坐标为(8,﹣4),
    ∵函数y=(k<0)的图象经过点B,
    ∴﹣4=,得k=﹣32.
    故选B.
    【点睛】
    本题主要考查菱形的性质和用待定系数法求反函数的系数,解此题的关键在于根据A点坐标求得OA的长,再根据菱形的性质求得B点坐标,然后用待定系数法求得反函数的系数即可.
    4、D
    【解析】
    先求出不等式的解集,再在数轴上表示出来即可.
    【详解】
    移项得,2x<1+1,
    合并同类项得,2x<2,
    x的系数化为1得,x<1.
    在数轴上表示为:

    故选D.
    【点睛】
    本题考查了解一元一次不等式,熟练掌握运算法则是解题的关键.
    5、B
    【解析】
    试题解析:列表如下:

    ∴共有20种等可能的结果,P(一男一女)=.
    故选B.
    6、B
    【解析】
    由矩形和菱形的判定方法得出A、C、D正确,B不正确;即可得出结论.
    【详解】
    解:A、若AB⊥BC,则是矩形,正确;
    B、若,则是正方形,不正确;
    C、若,则是矩形,正确;
    D、若,则是菱形,正确;
    故选B.
    【点睛】
    本题考查了正方形的判定、矩形的判定、菱形的判定;熟练掌握正方形的判定、矩形的判定、菱形的判定是解题的关键.
    7、D
    【解析】
    根据科学记数法的定义可得到答案.
    【详解】
    338亿=33800000000=,
    故选D.
    【点睛】
    把一个大于10或者小于1的数表示为的形式,其中1≤|a|<10,这种记数法叫做科学记数法.
    8、C
    【解析】
    根据∠1与∠2互补,∠2与∠1互余,先把∠1、∠1都用∠2来表示,再进行运算.
    【详解】
    ∵∠1+∠2=180°
    ∴∠1=180°-∠2
    又∵∠2+∠1=90°
    ∴∠1=90°-∠2
    ∴∠1-∠1=90°,即∠1=90°+∠1.
    故选C.
    【点睛】
    此题主要记住互为余角的两个角的和为90°,互为补角的两个角的和为180度.
    9、D
    【解析】
    【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根据tanα=,即可解决问题.
    【详解】在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,
    ∴tanα=,
    ∴AB=,
    故选D.
    【点睛】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.
    10、B
    【解析】
    根据图示知,反比例函数的图象位于第一、三象限,
    ∴k>0,
    ∴一次函数y=kx−k的图象与y轴的交点在y轴的负半轴,且该一次函数在定义域内是增函数,
    ∴一次函数y=kx−k的图象经过第一、三、四象限;
    故选:B.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    过点A作AD⊥l1于D,过点B作BE⊥l1于E,根据同角的余角相等求出∠CAD=∠BCE,然后利用“角角边”证明△ACD和△CBE全等,根据全等三角形对应边相等可得CD=BE,然后利用勾股定理列式求出AC,然后利用锐角的正弦等于对边比斜边列式计算即可得解.
    【详解】
    如图,过点A作AD⊥l1于D,过点B作BE⊥l1于E,设l1,l2,l3间的距离为1,
    ∵∠CAD+∠ACD=90°,
    ∠BCE+∠ACD=90°,
    ∴∠CAD=∠BCE,
    在等腰直角△ABC中,AC=BC,
    在△ACD和△CBE中,

    ∴△ACD≌△CBE(AAS),
    ∴CD=BE=1,
    ∴AD=2,
    ∴AC=,
    ∴AB=AC=,
    ∴sinα=,
    故答案为.

    【点睛】
    本题考查了全等三角形的判定与性质,等腰直角三角形的性质,锐角三角函数的定义,正确添加辅助线构造出全等三角形是解题的关键.
    12、
    【解析】
    第一次旋转是以点A为圆心,那么菱形中心旋转的半径就是OA,解直角三角形可求出OA的长,圆心角是60°.第二次还是以点A为圆心,那么菱形中心旋转的半径就是OA,圆心角是60°.第三次就是以点B为旋转中心,OB为半径,旋转的圆心角为60度.旋转到此菱形就又回到了原图.故这样旋转6次,就是2个这样的弧长的总长,进而得出经过6次这样的操作菱形中心O所经过的路径总长.
    【详解】
    解:∵菱形ABCD中,AB=4,∠C=60°,
    ∴△ABD是等边三角形, BO=DO=2,
    AO==,
    第一次旋转的弧长=,
    ∵第一、二次旋转的弧长和=+=,
    第三次旋转的弧长为:,
    故经过6次这样的操作菱形中心O所经过的路径总长为:2×(+)=.
    故答案为:.

    【点睛】
    本题考查菱形的性质,翻转的性质以及解直角三角形的知识.
    13、6
    【解析】
    根据正弦函数的定义得出sinA=,即,即可得出AB的值.
    【详解】
    ∵sinA=,即,
    ∴AB=1,
    故答案为1.
    【点睛】
    本题考查了解直角三角形,熟练掌握正弦函数的定义是解题的关键.
    14、
    【解析】
    根据抛物线的解析式结合抛物线过点B、C,即可得出点C的横坐标,由菱形的性质可得出AD=AB=BC=1,再根据勾股定理可求出OB的长度,套用平行四边形的面积公式即可得出菱形ABCD的面积.
    【详解】
    抛物线的对称轴为x=-.
    ∵抛物线y=-x2-1x+c经过点B、C,且点B在y轴上,BC∥x轴,
    ∴点C的横坐标为-1.
    ∵四边形ABCD为菱形,
    ∴AB=BC=AD=1,
    ∴点D的坐标为(-2,0),OA=2.
    在Rt△ABC中,AB=1,OA=2,
    ∴OB==4,
    ∴S菱形ABCD=AD•OB=1×4=3.
    故答案为3.
    【点睛】
    本题考查了二次函数图象上点的坐标特征、二次函数的性质、菱形的性质以及平行四边形的面积,根据二次函数的性质、菱形的性质结合勾股定理求出AD=1、OB=4是解题的关键.
    15、①②④
    【解析】
    ①根据ASA可证△BOE≌△COF,根据全等三角形的性质得到BE=CF,根据等弦对等弧得到 ,可以判断①;
    ②根据SAS可证△BOG≌△COH,根据全等三角形的性质得到∠GOH=90°,OG=OH,根据等腰直角三角形的判定得到△OGH是等腰直角三角形,可以判断②;
    ③通过证明△HOM≌△GON,可得四边形OGBH的面积始终等于正方形ONBM的面积,可以判断③;
    ④根据△BOG≌△COH可知BG=CH,则BG+BH=BC=4,设BG=x,则BH=4-x,根据勾股定理得到GH== ,可以求得其最小值,可以判断④.
    【详解】
    解:①如图所示,

    ∵∠BOE+∠BOF=90°,∠COF+∠BOF=90°,
    ∴∠BOE=∠COF,
    在△BOE与△COF中,

    ∴△BOE≌△COF,
    ∴BE=CF,
    ∴ ,①正确;
    ②∵OC=OB,∠COH=∠BOG,∠OCH=∠OBG=45°,
    ∴△BOG≌△COH;
    ∴OG=OH,∵∠GOH=90°,
    ∴△OGH是等腰直角三角形,②正确.
    ③如图所示,

    ∵△HOM≌△GON,
    ∴四边形OGBH的面积始终等于正方形ONBM的面积,③错误;
    ④∵△BOG≌△COH,
    ∴BG=CH,
    ∴BG+BH=BC=4,
    设BG=x,则BH=4-x,
    则GH==,
    ∴其最小值为4+2,④正确.
    故答案为:①②④
    【点睛】
    考查了圆的综合题,关键是熟练掌握全等三角形的判定和性质,等弦对等弧,等腰直角三角形的判定,勾股定理,面积的计算,综合性较强.
    16、x+1
    【解析】
    先通分,进行分式的加减法,再将分子进行因式分解,然后约分即可求出结果.
    【详解】
    解:
    =


    .
    故答案是:x+1.
    【点睛】
    本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.

    三、解答题(共8题,共72分)
    17、【思考】h1+h1=h;【探究】h1-h1=h.理由见解析;【应用】所求点M的坐标为(,1)或(-,4).
    【解析】
    思考:根据等腰三角形的性质,把代数式化简可得.
    探究:当点M在BC延长线上时,连接,可得,化简可得.
    应用:先证明,△ABC为等腰三角形,即可运用上面得到的性质,再分点M在BC边上和在CB延长线上两种情况讨论,第一种有1+My=OB,第二种为My-1=OB,解得的纵坐标,再分别代入的解析式即可求解.
    【详解】
    思考



    h1+h1=h.
    探究
    h1-h1=h.
    理由.连接,


    ∴h1-h1=h.
    应用
    在中,令x=0得y=3;
    令y=0得x=-4,则:
    A(-4,0),B(0,3)
    同理求得C(1,0),

    又因为AC=5,
    所以AB=AC,即△ABC为等腰三角形.
    ①当点M在BC边上时,
    由h1+h1=h得:
    1+My=OB,My=3-1=1,
    把它代入y=-3x+3中求得:

    ∴;
    ②当点M在CB延长线上时,
    由h1-h1=h得:
    My-1=OB,My=3+1=4,
    把它代入y=-3x+3中求得:

    ∴,
    综上,所求点M的坐标为或.
    【点睛】
    本题结合三角形的面积和等腰三角形的性质考查了新性质的推理与证明,熟练掌握三角形的性质,结合图形层层推进是解答的关键.
    18、(1);(2)列表见解析,.
    【解析】
    试题分析:(1)一共有3种等可能的结果总数,摸出标有数字2的小球有1种可能,因此摸出的球为标有数字2的小球的概率为;(2)利用列表得出共有9种等可能的结果数,再找出点M落在如图所示的正方形网格内(包括边界)的结果数,可求得结果.
    试题解析:(1)P(摸出的球为标有数字2的小球)=;(2)列表如下:
    小华
    小丽

    -1

    0

    2

    -1

    (-1,-1)

    (-1,0)

    (-1,2)

    0

    (0,-1)

    (0,0)

    (0,2)

    2

    (2,-1)

    (2,0)

    (2,2)

    共有9种等可能的结果数,其中点M落在如图所示的正方形网格内(包括边界)的结果数为6,
    ∴P(点M落在如图所示的正方形网格内)==.
    考点:1列表或树状图求概率;2平面直角坐标系.
    19、(1)任意写出两个符合题意的答案,如:;(2),顶点坐标为
    【解析】
    (1)根据关于y轴对称的二次函数的特点,只要两个函数的顶点坐标根据y轴对称即可;
    (2)根据函数的特点得出a=m,--=0, ,进一步得出m=a,n=-b,p=c,从而得到y1+y2=2ax2+2c,根据关系式即可得到顶点坐标.
    【详解】
    解:(1)答案不唯一,如;
    (2)∵y1=ax2+bx+c和y2=mx2+nx+p是“关于y轴对称的二次函数”,
    即a=m,--=0,,
    整理得m=a,n=-b,p=c,
    则y1+y2=ax2+bx+c+ax2-bx+c=2ax2+2c,
    ∴函数y1+y2的顶点坐标为(0,2c).
    【点睛】
    本题考查了二次函数的图象与几何变换,得出变换的规律是解题的关键.
    20、(1)见解析;(2)见解析,A2(6,4),B2(4,2),C2(5,1);(1)△A1B1C1和△A2B2C2是轴对称图形,对称轴为图中直线l:x=1,见解析.
    【解析】
    (1)根据轴对称图形的性质,找出A、B、C的对称点A1、B1、C1,画出图形即可;
    (2)根据平移的性质,△ABC向右平移6个单位,A、B、C三点的横坐标加6,纵坐标不变;
    (1)根据轴对称图形的性质和顶点坐标,可得其对称轴是l:x=1.
    【详解】
    (1)由图知,A(0,4),B(﹣2,2),C(﹣1,1),∴点A、B、C关于y轴对称的对称点为A1(0,4)、B1(2,2)、C1(1,1),连接A1B1,A1C1,B1C1,得△A1B1C1;
    (2)∵△ABC向右平移6个单位,∴A、B、C三点的横坐标加6,纵坐标不变,作出△A2B2C2,A2(6,4),B2(4,2),C2(5,1);
    (1)△A1B1C1和△A2B2C2是轴对称图形,对称轴为图中直线l:x=1.

    【点睛】
    本题考查了轴对称图形的性质和作图﹣平移变换,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.
    21、(1)证明见解析;(2)结论:成立.理由见解析;(3)①30°,②1+.
    【解析】
    (1)只要证明AB=ED,AB∥ED即可解决问题;(2)成立.如图2中,过点M作MG∥DE交CE于G.由四边形DMGE是平行四边形,推出ED=GM,且ED∥GM,由(1)可知AB=GM,AB∥GM,可知AB∥DE,AB=DE,即可推出四边形ABDE是平行四边形;
    (3)①如图3中,取线段HC的中点I,连接MI,只要证明MI=AM,MI⊥AC,即可解决问题;②设DH=x,则AH= x,AD=2x,推出AM=4+2x,BH=4+2x,由四边形ABDE是平行四边形,推出DF∥AB,推出 ,可得,解方程即可;
    【详解】
    (1)证明:如图1中,

    ∵DE∥AB,
    ∴∠EDC=∠ABM,
    ∵CE∥AM,
    ∴∠ECD=∠ADB,
    ∵AM是△ABC的中线,且D与M重合,
    ∴BD=DC,
    ∴△ABD≌△EDC,
    ∴AB=ED,∵AB∥ED,
    ∴四边形ABDE是平行四边形.
    (2)结论:成立.理由如下:
    如图2中,过点M作MG∥DE交CE于G.

    ∵CE∥AM,
    ∴四边形DMGE是平行四边形,
    ∴ED=GM,且ED∥GM,
    由(1)可知AB=GM,AB∥GM,
    ∴AB∥DE,AB=DE,
    ∴四边形ABDE是平行四边形.
    (3)①如图3中,取线段HC的中点I,连接MI,

    ∵BM=MC,
    ∴MI是△BHC的中位线,
    ∴MI∥BH,MI=BH,
    ∵BH⊥AC,且BH=AM.
    ∴MI=AM,MI⊥AC,
    ∴∠CAM=30°.
    ②设DH=x,则AH=x,AD=2x,
    ∴AM=4+2x,
    ∴BH=4+2x,
    ∵四边形ABDE是平行四边形,
    ∴DF∥AB,
    ∴,
    ∴,
    解得x=1+或1﹣(舍弃),
    ∴DH=1+.
    【点睛】
    本题考查了四边形综合题、平行四边形的判定和性质、直角三角形30度角的判定、平行线分线成比例定理、三角形的中位线定理等知识,解题的关键能正确添加辅助线,构造特殊四边形解决问题.
    22、 (1)补全图形见解析;(2)B;(3)估计该年级学生中“经常随手丢垃圾”的学生约有75人,就该年级经常随手丢垃圾的学生人数看出仍需要加强公共卫生教育、宣传和监督.
    【解析】
    (1)根据被调查的总人数求出C情况的人数与B情况人数所占比例即可;
    (2)根据众数的定义求解即可;
    (3)该年级学生中“经常随手丢垃圾”的学生=总人数×C情况的比值.
    【详解】
    (1)∵被调查的总人数为60÷30%=200人,
    ∴C情况的人数为200﹣(60+130)=10人,B情况人数所占比例为×100%=65%,
    补全图形如下:

    (2)由条形图知,B情况出现次数最多,
    所以众数为B,
    故答案为B.
    (3)1500×5%=75,
    答:估计该年级学生中“经常随手丢垃圾”的学生约有75人,就该年级经常随手丢垃圾的学生人数看出仍需要加强公共卫生教育、宣传和监督.
    【点睛】
    本题考查了众数与扇形统计图与条形统计图,解题的关键是熟练的掌握众数与扇形统计图与条形统计图的相关知识点.
    23、自行车速度为16千米/小时,汽车速度为40千米/小时.
    【解析】
    设自行车速度为x千米/小时,则汽车速度为2.5x千米/小时,根据甲班师生骑自行车先走,45分钟后,乙班师生乘汽车出发,结果同时到达,即可列方程求解.
    【详解】
    设自行车速度为x千米/小时,则汽车速度为2.5x千米/小时,由题意得

    解得x=16,
    经检验x=16适合题意,
    2.5x=40,
    答:自行车速度为16千米/小时,汽车速度为40千米/小时.
    24、(1);(2)①见解析;②;(3)存在点B,使△MBF的周长最小.△MBF周长的最小值为11,直线l的解析式为.
    【解析】
    (1)用待定系数法将已知两点的坐标代入抛物线解析式即可解答.
    (2)①由于BC∥y轴,容易看出∠OFC=∠BCF,想证明∠BFC=∠OFC,可转化为求证∠BFC=∠BCF,根据“等边对等角”,也就是求证BC=BF,可作BD⊥y轴于点D,设B(m,),通过勾股定理用表示出的长度,与相等,即可证明.
    ②用表示出点的坐标,运用勾股定理表示出的长度,令,解关于的一元二次方程即可.
    (3)求折线或者三角形周长的最小值问题往往需要将某些线段代换转化到一条直线上,再通过“两点之间线段最短”或者“垂线段最短”等定理寻找最值.本题可过点M作MN⊥x轴于点N,交抛物线于点B1,过点B作BE⊥x轴于点E,连接B1F,通过第(2)问的结论
    将△MBF的边转化为,可以发现,当点运动到位置时,△MBF周长取得最小值,根据求平面直角坐标系里任意两点之间的距离的方法代入点与的坐标求出的长度,再加上即是△MBF周长的最小值;将点的横坐标代入二次函数求出,再联立与的坐标求出的解析式即可.
    【详解】
    (1)解:将点(-2,2)和(4,5)分别代入,得:

    解得:
    ∴抛物线的解析式为:.
    (2)①证明:过点B作BD⊥y轴于点D,
    设B(m,),
    ∵BC⊥x轴,BD⊥y轴,F(0,2)
    ∴BC=,
    BD=|m|,DF=

    ∴BC=BF
    ∴∠BFC=∠BCF

    又BC∥y轴,∴∠OFC=∠BCF
    ∴∠BFC=∠OFC
    ∴FC平分∠BFO .

    (说明:写一个给1分)
    (3)存在点B,使△MBF的周长最小.
    过点M作MN⊥x轴于点N,交抛物线于点B1,过点B作BE⊥x轴于点E,连接B1F
    由(2)知B1F=B1N,BF=BE
    ∴△MB1F的周长=MF+MB1+B1F=MF+MB1+B1N=MF+MN
    △MBF的周长=MF+MB+BF=MF+MB+BE
    根据垂线段最短可知:MN<MB+BE
    ∴当点B在点B1处时,△MBF的周长最小
    ∵M(3,6),F(0,2)
    ∴,MN=6
    ∴△MBF周长的最小值=MF+MN=5+6=11
    将x=3代入,得:
    ∴B1(3,)
    将F(0,2)和B1(3,)代入y=kx+b,得:


    解得:
    ∴此时直线l的解析式为:.
    【点睛】
    本题综合考查了二次函数与一次函数的图象与性质,等腰三角形的性质,动点与最值问题等,熟练掌握各个知识点,结合图象作出合理辅助线,进行适当的转化是解答关键.

    相关试卷

    2024年广东省东莞市松山湖实验中学中考二模数学试题(无答案): 这是一份2024年广东省东莞市松山湖实验中学中考二模数学试题(无答案),共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年广东省东莞市松山湖沙田实验中学中考数学模拟试卷(含解析): 这是一份2024年广东省东莞市松山湖沙田实验中学中考数学模拟试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年广东省东莞市松山湖沙田实验中学中考数学模拟试卷(含解析): 这是一份2024年广东省东莞市松山湖沙田实验中学中考数学模拟试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map