搜索
    上传资料 赚现金
    英语朗读宝

    2025届广东省东莞市横沥莞盛学校九年级数学第一学期开学考试试题【含答案】

    2025届广东省东莞市横沥莞盛学校九年级数学第一学期开学考试试题【含答案】第1页
    2025届广东省东莞市横沥莞盛学校九年级数学第一学期开学考试试题【含答案】第2页
    2025届广东省东莞市横沥莞盛学校九年级数学第一学期开学考试试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届广东省东莞市横沥莞盛学校九年级数学第一学期开学考试试题【含答案】

    展开

    这是一份2025届广东省东莞市横沥莞盛学校九年级数学第一学期开学考试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)一次函数的图像经过( )
    A.第一、二、三象限B.第二、三、四象限C.第一、三、四象限D.第一、二、四象限
    2、(4分)如图,在所在平面上任意取一点O(与A、B、C不重合),连接OA、OB、OC,分别取OA、OB、OC的中点、、,再连接、、得到,则下列说法不正确的是( )
    A.与是位似图形
    B.与是相似图形
    C.与的周长比为2:1
    D.与的面积比为2:1
    3、(4分)三角形的三边长分别为6,8,10,它的最短边上的高为( )
    A.6 B.4.5 C.2.4 D.8
    4、(4分)如图,在正方形中,点,分别在,上,,与相交于点.下列结论:①垂直平分;②;③当时,为等边三角形;④当时,.其中正确的结论是( )
    A.①③B.②④C.①③④D.②③④
    5、(4分)如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以正方形的对角线OA1为边作正方形OA1A2B1,再以正方形的对角线OA2为边作正方形OA1A2B1,…,依此规律,则点A2017的坐标是( )
    A.(21008,0)B.(21008,﹣21008)C.(0,21010)D.(22019,﹣22019)
    6、(4分)在函数中,自变量x的取值范围是( )
    A.B.C.D.
    7、(4分)若a0,则化简的结果为( )
    A.B.C.D.
    8、(4分)如图,长宽高分别为3,2,1的长方体木块上有一只小虫从顶点A出发沿着长方体的外表面亮到现点B,则它爬行的最短路程是( )
    A.B.2C.3D.5
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是把图1放入长方形内得到的,,AB=3,AC=4,点D,E,F,G,H,I都在长方形KLMJ的边上,则长方形KLMJ的面积为___.
    10、(4分)已知一次函数y=(-1-a2)x+1的图象过点(x1,2),(x2-1),则x1与x2的大小关系为______.
    11、(4分)如图,小明在“4x5”的长方形内丢一粒花生(将花生看作一个点),则花生落在阴影的部分的概率是_________
    12、(4分)如图,在平行四边形中,的平分线交于点,.若,,则四边形的面积为________.
    13、(4分)一组数据1,3,5,7,9的方差为________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知:,求得值.
    15、(8分)如图,在平面直角坐标系中,O 为坐标原点,P、Q 是反比例函数(x>0)图象上的两点,过点 P、Q 分别作直线且与 x、y 轴分别交于点 A、B和点 M、N.已知点 P 为线段 AB 的中点.
    (1)求△AOB 的面积(结果用含 a 的代数式表示);
    (2)当点 Q 为线段 MN 的中点时,小菲同学连结 AN,MB 后发现此时直线 AN 与直线MB 平行,问小菲同学发现的结论正确吗?为什么?
    16、(8分)解不等式组,并在数轴上表示出它的解集.
    17、(10分)如图,中且,又、为的三等分点.
    (1)求证;
    (2)证明:;
    (3)若点为线段上一动点,连接则使线段的长度为整数的点的个数________.(直接写答案无需说明理由)
    18、(10分)(1)已知,求的值;
    (2)解方程:.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)依次为95、90、88,则小彤这学期的体育成绩为______分.
    20、(4分)若二次函数y=mx2-(2m-1)x+m的图像顶点在y轴上,则m= .
    21、(4分)如果关于x的分式方程有增根,那么m的值为______.
    22、(4分)如图,两个完全相同的正五边形ABCDE,AFGHM的边DE,MH在同一直线上,且有一个公共顶点A,若正五边形ABCDE绕点A旋转x度与正五边形AFGHM重合,则x的最小值为_____.
    23、(4分)如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD的长为_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)计算:,
    25、(10分)如图1,在正方形ABCD中,点E、F分别是边BC、CD上的点,且CE=CF,连接AE,AF,取AE的中点M,EF的中点N,连接BM,MN.
    (1)请判断线段BM与MN的数量关系和位置关系,并予以证明.
    (2)如图2,若点E在CB的延长线上,点F在CD的延长线上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
    26、(12分)如图,点E,F是□ABCD的对角线BD上两点,且BE=DF.求证:四边形AECF是平行四边形.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据一次函数的性质k<0,则可判断出函数图象y随x的增大而减小,再根据b>0,则函数图象一定与y轴正半轴相交,即可得到答案.
    【详解】
    解:∵一次函数y=-2x+3中,k=-2<0,则函数图象y随x的增大而减小,
    b=3>0,则函数图象一定与y轴正半轴相交,
    ∴一次函数y=-2x+3的图象经过第一、二、四象限.
    故选:D.
    本题考查了一次函数的图象,一次函数y=kx+b的图象经过的象限由k、b的值共同决定,分如下四种情况:①当k>0,b>0时,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0时,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象.
    2、D
    【解析】
    根据三角形中位线定理得到A1B1=AB,A1C1=AC,B1C1=BC,根据位似变换的概念、相似三角形的性质判断即可.
    【详解】
    ∵点A1、B1、C1分别是OA、OB、OC的中点,
    ∴A1B1=AB,A1C1=AC,B1C1=BC,
    ∴△ABC与△A1B1C1是位似图形,A正确;
    △ABC与是△A1B1C1相似图形,B正确;
    △ABC与△A1B1C1的周长比为2:1,C正确;
    △ABC与△A1B1C1的面积比为4:1,D错误;
    故选:D.
    考查的是位似变换,掌握位似变换的概念、相似三角形的性质是解题的关键.
    3、D
    【解析】
    本题考查了直角三角形的判定即勾股定理的逆定理和直角三角形的性质
    由勾股定理的逆定理判定该三角形为直角三角形,然后由直角三角形的定义解答出最短边上的高.
    由题意知,,所以根据勾股定理的逆定理,三角形为直角三角形.长为6的边是最短边,它上的高为另一直角边的长为1.故选D.
    4、A
    【解析】
    ①通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,
    ②设BC=x,CE=y,由勾股定理就可以得出EF与x、y的关系,表示出BE与EF,即可判断BE+DF与EF关系不确定;
    ③当∠DAF=15°时,可计算出∠EAF=60°,即可判断△EAF为等边三角形,
    ④当∠EAF=60°时,可证明△AEF是等边三角形,从而可得∠AEF=60°,而△CEF是等腰直角三角形,得∠CEF=45°,从而可求出∠AEB=75°,进而可得结论.
    【详解】
    解:①四边形ABCD是正方形,
    ∴AB═AD,∠B=∠D=90°.
    在Rt△ABE和Rt△ADF中,

    ∴Rt△ABE≌Rt△ADF(HL),
    ∴BE=DF
    ∵BC=CD,
    ∴BC-BE=CD-DF,即CE=CF,
    ∵AE=AF,
    ∴AC垂直平分EF.(故①正确).
    ②设BC=a,CE=y,
    ∴BE+DF=2(a-y)
    EF=y,
    ∴BE+DF与EF关系不确定,只有当y=(2−)a时成立,(故②错误).
    ③当∠DAF=15°时,
    ∵Rt△ABE≌Rt△ADF,
    ∴∠DAF=∠BAE=15°,
    ∴∠EAF=90°-2×15°=60°,
    又∵AE=AF
    ∴△AEF为等边三角形.(故③正确).
    ④当∠EAF=60°时,由①知AE=AF,
    ∴△AEF是等边三角形,
    ∴∠AEF=60°,
    又△CEF为等腰直角三角形,
    ∴∠CEF=45°
    ∴∠AEB=180°-∠AEF-∠CEF=75°,
    ∴∠AEB≠∠AEF,故④错误.
    综上所述,正确的有①③,
    故选:A.
    本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.
    5、B
    【解析】
    根据正方形的性质可找出部分点An的坐标,根据坐标的变化即可找出A (2 ,2 )(n为自然数),再根据2017=252×8+1,即可找出点A2019的坐标.
    【详解】
    观察发现:
    A(0,1)、A(1,1),A(2,0),A(2,−2),A (0,−4),A (−4,−4),A (−8,0),A (−8,8),A (0,16),A (16,16)…,
    ∴A (2 ,2 )(n为自然数).
    ∵2017=252×8+1,
    ∴A2017的坐标是(21008,﹣21008).
    故选B.
    此题考查规律型:点的坐标,解题关键在于找到规律
    6、B
    【解析】
    根据这一性质即可确定.
    【详解】
    解:
    故选:B
    本题考查了函数自变量的取值范围,由函数解析式确定自变量满足的条件是解题的关键.
    7、B
    【解析】
    根据二次根式的性质化简即可.
    【详解】
    解:由于a<0,b>0,
    ∴ab<0,
    ∴原式=|ab|=−ab,
    故选:B.
    本题考查二次根式,解题的关键是熟练运用二次根式的性质,属于基础题型.
    8、C
    【解析】
    将长方形的盒子按不同方式展开,得到不同的矩形,求出不同矩形的对角线,最短者即为正确答案.
    【详解】
    解:将长方形的盒子按不同方式展开,得到不同的矩形,对角线长分别为:

    ∴从点A出发沿着长方体的表面爬行到达点B的最短路程是3.
    故选C.
    本题主要考查了两点之间线段最短,解答时根据实际情况进行分类讨论,灵活运用勾股定理是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、110
    【解析】
    延长AB交KF于点O,延长AC交GM于点P,可得四边形AOLP是正方形,然后求出正方形的边长,再求出矩形KLMJ的长与宽,然后根据矩形的面积公式列式计算即可得解.
    【详解】
    如图,延长AB交KF于点O,延长AC交GM于点P,则四边形OALP是矩形.
    ∵∠CBF=90°,
    ∴∠ABC+∠OBF=90°,
    又∵直角△ABC中,∠ABC+∠ACB=90°,
    ∴∠OBF=∠ACB,
    在△OBF和△ACB中,

    ∴△OBF≌△ACB(AAS),
    ∴AC=OB,
    同理:△ACB≌△PGC,
    ∴PC=AB,
    ∴OA=AP,
    所以,矩形AOLP是正方形,
    边长AO=AB+AC=3+4=7,
    所以,KL=3+7=10,LM=4+7=11,
    因此,矩形KLMJ的面积为10×11=110.
    本题考查勾股定理,解题的关键是读懂题意,掌握勾股定理.
    10、x1<x1
    【解析】
    由k=-1-a1,可得y随着x的增大而减小,由于1>-1, 所以x1<x1.
    【详解】
    ∵y=(-1-a1)x+1,k=-1-a1<0,
    ∴y随着x的增大而减小,
    ∵1>-1,
    ∴x1<x1.
    故答案为:x1<x1
    本题考查的是一次函数,熟练掌握一次函数的性质是解题的关键.
    11、
    【解析】
    根据题意,判断概率类型,分别算出长方形面积和阴影面积,再利用几何概型公式加以计算,即可得到所求概率.
    【详解】
    解:长方形面积=4×5=20,
    阴影面积=,
    ∴这粒豆子落入阴影部分的概率为:P=,
    故答案为:.
    本题给出丢豆子的事件,求豆子落入指定区域的概率.着重考查了长方形、三角形面积公式和几何概型的计算等知识,属于基础题.
    12、1
    【解析】
    首先证明四边形ABEF是菱形,然后求出AE即可解决问题.
    【详解】
    解:连接AE,交BF于点O.
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,即AF∥BE,
    ∵EF∥AB,
    ∴四边形ABEF是平行四边形,
    ∵AF∥BE,
    ∴∠AFB=∠FBE,
    ∵BF平分∠ABC,
    ∴∠ABF=∠CBF,
    ∴∠ABF=∠AFB,
    ∴AB=AF,
    ∴平行四边形ABEF是菱形,连接AE交BF于O,
    ∴AE⊥BF,OB=OF=3,OA=OE,
    在Rt△AOB中,OA==4,
    ∴AE=2OA=8,
    ∴S菱形ABEF=•AE•BF=1.
    故答案为1.
    本题考查菱形的性质和判定,平行四边形的性质和判定,勾股定理,等腰三角形的性质,平行线的性质等知识点的应用,能综合运用性质和判定进行推理是解此题的关键,难度适中.
    13、8
    【解析】
    根据方差公式S2= 计算即可得出答案.
    【详解】
    解:∵ 数据为1,3,5,7,9,
    ∴平均数为:=5,
    ∴方差为:[(1-5)2+(3-5)2+(5-5)2+(7-5)2+(9-5)2] =8.
    故答案为8.
    本题考查方差的计算,熟记方差公式是解题关键.
    三、解答题(本大题共5个小题,共48分)
    14、2015
    【解析】
    先根据完全平方公式将多项式变形,再将a的值代入计算即可.
    【详解】
    原式=,
    ∵,
    ∴原式.
    此题考查多项式的化简求值,二次根式的乘方计算,将多项式正确变形使计算更加简便.
    15、(1)S=2a+2;(2)正确,理由见解析
    【解析】
    (1)过点P作PP⊥x轴,PP ⊥y轴,由P为线段AB的中点,可知PP,PP是△AOB的中位线,故OA=2PP,OB=2PP,再由点P是反比例函数y=(x>0)图象上的点,可知S = OA×OB=×2PP×2PP=2PP×PP=2a+2;
    (2)由点Q为线段MN的中点,可知同(1)可得S=S =2a+2,故可得出OA•OB=OM•ON,即 ,由相似三角形的判定定理可知△AON∽△MOB,故∠OAN=∠OMB,由此即可得出结论.
    【详解】
    (1)过点P作PP⊥x轴,PP⊥y轴,
    ∵P为线段AB的中点,
    ∴PP,PP是△AOB的中位线,
    ∴OA=2PP,OB=2PP,
    ∵点P是反比例函数y= (x>0)图象上的点,
    ∴S =OA×OB=×2PP×2PP=2PP×PP=2a+2;
    (2)结论正确.
    理由:∵点Q为线段MN的中点,
    ∴同(1)可得S=S =2a+2,
    ∴OA⋅OB=OM⋅ON,
    ∴,
    ∵∠AON=∠MOB,
    ∴△AON∽△MOB,
    ∴∠OAN=∠OMB,
    ∴AN∥MB.
    此题考查反比例函数综合题,解题关键在于作辅助线
    16、﹣1≤x<3,数轴上表示见解析
    【解析】
    分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
    【详解】
    解:解不等式①,得:,
    解不等式②,得:,
    则不等式组的解集为,
    将解集表示在数轴上如下:
    本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    17、(1)见解析;(2)见解析;(3)4.
    【解析】
    (1)利用勾股定理求得AD、DE的长,再根据BD、AD的长,利用两边对应相等,且夹角相等的两个三角形相似,即可判断;
    (2)利用相似三角形的对应角相等以及三角形的外角的性质即可判断;
    (3)作EF⊥AB于点F,利用△ABC∽△EBF,求得EF的长,即可确定PE的长的范围,从而求解.
    【详解】
    解:(1)证明:∵,
    ∴,
    ∴在和中,,,
    ∴,
    又∵,
    ∴;
    (2)证明:∵,
    ∴,
    又∵,
    ∴;
    (3)作于点.
    在直角中,.
    ∵,,
    ∴,
    ∴,即,
    解得:.
    又∵,,
    则,的整数值是1或2或3.
    则当时,的位置有2个;
    当时,的位置有1个;
    当时,的位置有1个.
    故的整数点有4个.
    故答案是:4.
    本题考查了相似三角形的判定与性质,正确作出辅助线,利用相似三角形的性质求得PE的范围是关键.
    18、(1);(2),.
    【解析】
    (1)代入即可进行求解;
    (2)根据因式分解法即可求解一元二次方程.
    【详解】
    (1)代入得:

    (2)解:,

    ,.
    此题主要考查代数式求值与解一元二次方程,解题的关键是熟知整式的运算及方程的解法.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    根据加权平均数的计算公式列出算式,再进行计算即可.
    【详解】
    解:根据题意得:
    95×20%+1×30%+88×50%=1(分).
    即小彤这学期的体育成绩为1分.
    故答案为:1.
    本题考查加权平均数,掌握加权平均数的计算公式是解题的关键.
    20、
    【解析】
    试题分析:由二次函数y=mx2-(2m-1)x+m的图像顶点在y轴上知,该二次函数的对称轴是直线x=0,
    根据二次函数对称轴的公式知,
    考点:二次函数对称轴
    点评:本题属于简单的公式应用题,相对来说比较简单,但是仍然要求学生对相应的公式牢记并理解,注意公式中各字母表示的含义。
    21、-4
    【解析】
    增根是化为整式方程后产生的不适合分式方程的根所以应先确定增根的可能值,让最简公分母,确定可能的增根;然后代入化为整式方程的方程求解,即可得到正确的答案.
    【详解】
    解:,
    去分母,方程两边同时乘以,得:,
    由分母可知,分式方程的增根可能是2,
    当时,,

    故答案为.
    考查了分式方程的增根增根问题可按如下步骤进行:让最简公分母为0确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.
    22、144°.
    【解析】
    根据多边形的内角和定理分别求出∠BAE=∠AED=∠FAM=∠AMH,即可求出∠EAM和∠BAF的度数,根据旋转的性质,分顺时针和逆时针讨论,取x的最小值.
    【详解】
    ∵五边形ABCDE,AFGHM是正五边形
    ∴∠BAE=∠AED=∠FAM=∠AMH108°,
    ∴∠AEM=∠AME=72°,
    ∴∠EAM=180°﹣72°﹣72°=36°,
    ∠BAF=360°-∠BAE -∠FAM-∠EAM=108°,
    ∵正五边形ABCDE绕点A旋转x度与正五边形AFGHM重合,
    顺时针旋转最小需:36°+108°=144°,逆时针旋转最小需:108°+108°=216°,
    ∴x的最小值为36°+108°=144°
    故答案为:144°.
    本题考查多边形的内角和外角,旋转的性质.能分情况讨论找出旋转前后对应线段并由此计算旋转角是解决此题的关键.
    23、1
    【解析】
    试题解析:∵在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,
    ∴CD2=AD•BD=8×2,
    则CD=1.
    二、解答题(本大题共3个小题,共30分)
    24、5-2
    【解析】
    先根据绝对值、整数指数幂和二次根式的性质化简各数,然后进行加减即可得出答案。
    【详解】
    解:原式=2-1×1-2+4
    =5-2
    本题考查了实数的混合运算,熟练掌握运算法则是关键。
    25、(1)BM=MN,BM⊥MN,证明见解析;(2)仍然成立,证明见解析
    【解析】
    (1)根据已知正方形ABCD的边角相等关系,推出△ABE≌△ADF(SAS),得出AE=AF,利用MN是△AEF的中位线,BM为Rt△ABE的中线,可得BM=MN,由外角性质,得出∠BME=∠1+∠3,再由MN∥AF,∠1+∠2+∠EAF=∠BAD=90°,等角代换可推出结论;
    (2)同(1)思路一样,证明△ABE≌△ADF(SAS),利用外角性质和中位线平行关系,通过等角代换即得证明结论.
    【详解】
    (1)BM=MN,BM⊥MN.
    证明:在正方形ABCD中,∠BAD=∠ABC=∠ADC=90°,AB=AD=BC=DC,
    ∵CE=CF,
    ∴BC-CE=DC-CF,
    ∴BE=DF,
    ∴△ABE≌△ADF(SAS),
    ∴∠1=∠2,AE=AF,
    ∵M为AE的中点,N为EF的中点,
    ∴MN是△AEF的中位线,BM为Rt△ABE的中线.
    ∴MN∥AF,MN=AF,BM=AE=AM,
    ∴BM=MN,∠EMN=∠EAF,
    ∵BM=AM,
    ∴∠1=∠3, ∠2=∠3,
    ∴∠BME=∠1+∠3=∠1+∠2,
    ∴∠BMN=∠BME+∠EMN=∠1+∠2+∠EAF=∠BAD=90°,
    ∴BM⊥MN.
    故答案为:BM=MN,BM⊥MN.

    (2)(1)中结论仍然成立.
    证明:在正方形ABCD中,∠BAD=∠ABC=∠ADC=90°,AB=AD=BC=DC,
    ∴∠ABE=∠ADF=90°,
    ∵CE=CF,∴CE-BC=CF-DC,∴BE=DF,
    ∴△ABE≌△ADF(SAS),∴∠1=∠2,AE=AF,
    同理(1)得MN∥AF,MN=AF,BM=AE=AM,
    ∴BM=MN,
    同理(1)得∠BME=∠1+∠2,∠EMN=∠EAF,
    ∴∠BMN=∠EMN-∠BME=∠EAF-(∠1+∠2)=∠BAD=90°,
    ∴BM⊥MN,
    故答案为:结论仍成立.
    考查了正方形的性质,全等三角形的判定和性质,外角的性质,直角三角形中中线的性质,三角形中位线性质,熟记几何图形的性质概念是解题关键,注意图形的类比拓展.
    26、证明见解析.
    【解析】
    先根据平行四边形的性质得出,再根据平行性的性质可得,然后根据三角形全等的判定定理与性质得出,从而可得,由平行线的判定可得,最后根据平行四边形的判定即可得证.
    【详解】
    四边形ABCD是平行四边形
    在和中,
    ,即
    四边形AECF是平行四边形.
    本题考查了平行四边形的判定与性质、平行线的性质、三角形全等的判定定理与性质等知识点,熟记平行四边形的判定与性质是解题关键.
    题号





    总分
    得分
    批阅人

    相关试卷

    广东省东莞市横沥爱华学校2023-2024学年数学九年级第一学期期末质量检测模拟试题含答案:

    这是一份广东省东莞市横沥爱华学校2023-2024学年数学九年级第一学期期末质量检测模拟试题含答案,共7页。试卷主要包含了下列四对图形中,是相似图形的是等内容,欢迎下载使用。

    2023-2024学年广东省东莞市横沥莞盛学校九上数学期末综合测试模拟试题含答案:

    这是一份2023-2024学年广东省东莞市横沥莞盛学校九上数学期末综合测试模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,估计 ,的值应在,-2019的相反数是等内容,欢迎下载使用。

    2023-2024学年广东省东莞市横沥爱华学校数学八上期末综合测试试题含答案:

    这是一份2023-2024学年广东省东莞市横沥爱华学校数学八上期末综合测试试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,解分式方程时,去分母后变形为,8的平方根为等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map