|试卷下载
终身会员
搜索
    上传资料 赚现金
    福建省漳州市平和第一中学2024-2025学年数学九上开学学业质量监测模拟试题【含答案】
    立即下载
    加入资料篮
    福建省漳州市平和第一中学2024-2025学年数学九上开学学业质量监测模拟试题【含答案】01
    福建省漳州市平和第一中学2024-2025学年数学九上开学学业质量监测模拟试题【含答案】02
    福建省漳州市平和第一中学2024-2025学年数学九上开学学业质量监测模拟试题【含答案】03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    福建省漳州市平和第一中学2024-2025学年数学九上开学学业质量监测模拟试题【含答案】

    展开
    这是一份福建省漳州市平和第一中学2024-2025学年数学九上开学学业质量监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)在解分式方程+=2时,去分母后变形正确的是( )
    A.B.
    C.D.
    2、(4分)下列角度中,不能是某多边形内角和的是( )
    A.600°B.720°C.900°D.1080°
    3、(4分)下列各式中,最简二次根式是( )
    A.B.C.D.
    4、(4分)已知一元二次方程,则它的一次项系数为( )
    A.B.C.D.
    5、(4分)菱形的对角线不一定具有的性质是( )
    A.互相平分B.互相垂直C.每一条对角线平分一组对角D.相等
    6、(4分)今年我市有近2万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是( )
    A.这1000名考生是总体的一个样本B.近2万名考生是总体
    C.每位考生的数学成绩是个体D.1000名学生是样本容量
    7、(4分)如图,在菱形ABCD中,∠B=120°,对角线AC=6cm,则AB的长为( )cm
    A.B.C.D.
    8、(4分)如图,已知直线y1=x+a与y2=kx+b相交于点P(﹣1,2),则关于x的不等式x+a>kx+b的解集正确的是( )
    A.x>﹣1B.x>1C.x<1D.x<﹣1
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)若n边形的每个内角都是,则________.
    10、(4分)已知实数满足,则以的值为两边长的等腰三角形的周长是_________________.
    11、(4分)如果a是一元二次方程的一个根,那么代数式=__________.
    12、(4分)如图,在矩形ABCD中,AB=4,BC,对角线AC、BD相交于点O,现将一个直角三角板OEF的直角顶点与O重合,再绕着O点转动三角板,并过点D作DH⊥OF于点H,连接AH.在转动的过程中,AH的最小值为_________.
    13、(4分)如图,在△ABC中,点D,E分别是BC,AC的中点,AB=8,则DE的长为________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,矩形ABCD的对角线AC、BD交于点O,且DE∥AC,CE∥BD.
    (1)求证:四边形OCED是菱形;
    (2)若∠BAC=30°,AC=4,求菱形OCED的面积.
    15、(8分)某工厂准备加工600个零件,在加工了100个零件后,采取了新技术,使每天的工作效率是原来的2倍,结果共用7天完成了任务,求该厂原来每天加工多少个零件?
    16、(8分)(1)解不等式组;
    (2)解方程;
    17、(10分)如图,在平行四边形ABCD中,∠DAB=60°,AB=2AD,点E、F分别是AB、CD的中点,过点A作AG∥BD,交CB的延长线于点G.
    (1)求证:四边形DEBF是菱形;
    (2)请判断四边形AGBD是什么特殊四边形? 并加以证明;
    (3)若AD=1,求四边形AGCD的面积.
    18、(10分)某校为了了解学生孝敬父母的情况(选项:A为父母洗一次脚;B帮父母做一次家务;C给父母买一件礼物;D其它),在全校范围内随机抽取了若干名学生进行调查,得到如下图表(部分信息未给出):
    根据以上信息解答下列问题:
    (1)这次被调查的学生有多少人?
    (2)求表中m,n,p的值,并补全条形统计图.
    (3)该校有1600名学生,估计该校全体学生中选择B选项的有多少人?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)在平面直角坐标系中,点P(a-1,a)是第二象限内的点,则a的取值范围是__________。
    20、(4分)如图,含45°角的直角三角板DBC的直角顶点D在∠BAC的角平分线AD上,DF⊥AB于F,DG⊥AC于G,将△DBC沿BC翻转,D的对应点落在E点处,当∠BAC=90°,AB=4,AC=3时,△ACE的面积等于_____.
    21、(4分)如图,矩形纸片中,已知,,点在边上,沿折叠纸片,使点落在点处,连结,当为直角三角形时,的长为______.
    22、(4分)如图,正方形的边长为,点,分别在边,上,若是的中点,且,则的长为_______.
    23、(4分)如图,在直角坐标系中,菱形ABCD的顶点坐标C(-1,0)、B(0,2)、D(n,2),点A在第二象限.直线y=-x+5与x轴、y轴分别交于点N、M.将菱形ABCD沿x轴向右平移m个单位.当点A落在MN上时,则m+n= ________
    二、解答题(本大题共3个小题,共30分)
    24、(8分)益群精品店以转件21元的价格购进一批商品,该商品可以白行定价,若每件商B品位价a元,可卖出(350-10a)件,但物价局限定每件商品的利润率不得超过20%,商店计划要盈利400元,求每件商品应定价多少元?
    25、(10分)某校要设计一座高的雕像(如图),使雕像的点(肚脐)为线段(全身)的黄金分割点,上部(肚脐以上)与下部(肚脐以下)的高度比为黄金比.则雕像下部设计的高度应该为______(结果精确到)米. (,结果精确到).
    26、(12分)解一元二次方程
    (1)2x+x-3=0 (2)
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    本题考查对一个分式确定最简公分母,去分母得能力.观察式子x-1和1-x互为相反数,可得1-x=-(x-1),所以可得最简公分母为x-1,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母.
    【详解】
    方程两边都乘以x-1,
    得:3-(x+2)=2(x-1).
    故答案选A.
    本题考查了解分式方程,解题的关键是方程两边都乘以最简公分母.
    2、A
    【解析】
    利用多边形的内角和公式即可作出判断.
    【详解】
    解:∵多边形内角和公式为(n-2)×180,
    ∴多边形内角和一定是180的倍数.
    故选:A.
    本题考查多边形内角和公式,在解题时要记住多边形内角和公式,并加以应用即可解决问题.
    3、C
    【解析】
    根据最简二次根式的定义逐个判断即可.最简二次根式满足两个条件,一是被开方式不含能开的尽方的因式,二是被开方式不含分母.
    【详解】
    A、 =,不是最简二次根式,故本选项不符合题意;
    B、=2,不是最简二次根式,故本选项不符合题意;
    C、是最简二次根式,故本选项符合题意;
    D、=2,不是最简二次根式,故本选项不符合题意;
    故选C.
    本题考查了最简二次根式的定义,能熟记最简二次根式的定义的内容是解此题的关键.
    4、D
    【解析】
    根据一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项可得答案.
    【详解】
    解:一元二次方程,则它的一次项系数为-2,
    故选:D.
    此题主要考查了一元二次方程的一般形式,关键是掌握一元二次方程的一般形式为ax2+bx+c=0(a≠0).
    5、D
    【解析】
    根据菱形的对角线性质,即可得出答案.
    【详解】
    解:∵菱形的对角线互相垂直平分,且每一条对角线平分一组对角,
    ∴菱形的对角线不一定具有的性质是相等;
    故选:D.
    此题主要考查了菱形的对角线性质,熟记菱形的对角线互相垂直平分,且每一条对角线平分一组对角是解题的关键.
    6、C
    【解析】
    试题分析:1000名考生的数学成绩是总体的一个样本;近8万多名考生的数学成绩是总体;每位考生的数学成绩是个体;1000是样本容量.
    考点:(1)、总体;(2)、样本;(3)、个体;(4)、样本容量.
    7、D
    【解析】
    作辅助线,证明Rt△AEB为特殊的直角三角形,利用三角函数即可求解.
    【详解】
    如下图,连接BD,角AC于点E,
    ∵四边形ABCD为菱形,
    ∴AC⊥BD,∠AEB=90°,BD平分∠ABC,即∠ABE=60°,AE=3cm,
    在Rt△AEB中, AE=3cm,
    ∴AB==3=2
    故选D.
    本题考查了菱形的性质,三角函数的实际应用,中等难度,作辅助线是解题关键.
    8、A
    【解析】
    根据图象求解不等式,要使x+a>kx+b,则必须在y1=x+a在y2=kx+b上方,根据图形即可写出答案.
    【详解】
    解:因为直线y1=x+a与y2=kx+b相交于点P(﹣1,2)
    要使不等式x+a>kx+b,则必须在y1=x+a在y2=kx+b上方
    所以可得x>﹣1时,y1=x+a在y2=kx+b上方
    故选A.
    本题主要考查利用函数图形求解不等式,关键在于根据图象求交点坐标.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    根据内角度数先算出外角度数,然后再根据外角和计算出边数即可.
    【详解】
    解:∵n边形的每个内角都是120°,
    ∴每一个外角都是180°-120°=10°,
    ∵多边形外角和为310°,
    ∴多边形的边数为310÷10=1,
    故答案为:1.
    此题主要考查了多边形的内角和外角,关键是掌握多边形的外角和等于310度.
    10、19
    【解析】
    先根据非负数的性质求得x、y的值,然后再根据等腰三角形的性质以及三角形三边关系进行讨论即可得.
    【详解】
    根据题意得,x-3=0,y-8=0,
    解得x=3,y=8,
    ①3是腰长时,三角形的三边分别为3、3、8,
    ∵3+3<8,
    ∴不能组成三角形,
    ②3是底边时,三角形的三边分别为3、8、8,
    能组成三角形,周长=3+8+8=19,
    所以,三角形的周长为19,
    故答案为:19.
    本题了非负数的性质,等腰三角形的性质,三角形三边的关系,涉及了绝对值的非负性,二次根式的非负性,等腰三角形的性质等,求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.
    11、1
    【解析】
    根据一元二次方程的解的定义得到a2-1a=5,再把8-a2+1a变形为8-(a2-1a),然后利用整体代入的方法计算即可.
    【详解】
    解:把x=a代入x2-1x-5=0得a2-1a-5=0,
    所以a2-1a=5,
    所以8-a2+1a=8-(a2-1a)=8-5=1.
    故答案为:1.
    本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
    12、1﹣1
    【解析】
    取OD的中点G,过G作GP⊥AD于P,连接HG,AG,依据∠ADB=30°,可得PGDG=1,依据∠DHO=90°,可得点H在以OD为直径的⊙G上,再根据AH+HG≥AG,即可得到当点A,H,G三点共线,且点H在线段AG上时,AH最短,根据勾股定理求得AG的长,即可得出AH的最小值.
    【详解】
    如图,取OD的中点G,过G作GP⊥AD于P,连接HG,AG.
    ∵AB=4,BC=4AD,∴BD8,∴BD=1AB,DO=4,HG=1,∴∠ADB=30°,∴PGDG=1,∴PD,AP=3.
    ∵DH⊥OF,∴∠DHO=90°,∴点H在以OD为直径的⊙G上.
    ∵AH+HG≥AG,∴当点A,H,G三点共线,且点H在线段AG上时,AH最短,此时,Rt△APG中,AG,∴AH=AG﹣HG=11,即AH的最小值为11.
    故答案为11.
    本题考查了圆和矩形的性质,勾股定理的综合运用,解决问题的关键是根据∠DHO=90°,得出点H在以OD为直径的⊙G上.
    13、1
    【解析】
    【分析】根据三角形的中位线定理进行求解即可得.
    【详解】∵D,E分别是BC,AC的中点,
    ∴DE是△ABC的中位线,
    ∴DE=AB==1,
    故答案为:1.
    【点睛】本题考查了三角形中位线定理,熟记定理的内容是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)证明见解析;(1).
    【解析】
    (1)由平行四边形的判定得出四边形OCED是平行四边形,根据矩形的性质求出OC=OD,根据菱形的判定得出即可.(1)解直角三角形求出BC=1.AB=DC=1,连接OE,交CD于点F,根据菱形的性质得出F为CD中点,求出OF=BC=1,求出OE=1OF=1,求出菱形的面积即可.
    【详解】
    证明:,,
    四边形OCED是平行四边形,
    矩形ABCD,,,,

    四边形OCED是菱形;
    在矩形ABCD中,,,,


    连接OE,交CD于点F,
    四边形OCED为菱形,
    为CD中点,
    为BD中点,



    本题主要考查了矩形的性质和菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:菱形的面积等于对角线积的一半.
    15、50.
    【解析】
    解:设该厂原来每天加工x个零件,
    由题意得:,
    解得x=50,
    经检验:x=50是原分式方程的解
    答:该厂原来每天加工50个零件.
    16、(1)2<x≤;(2)原分式方程无解
    【解析】
    (1)根据不等式组的解法即可求出答案.
    (2)根据分式方程的解法即可求出答案.
    【详解】
    解:(1)
    由①得:3x-3>x+1
    ∴2x>4
    解得:x>2
    由②得:x-1≥4x-8
    ∴-3x≥-7
    解得:x≤
    ∴不等式组的解集为:2<x≤
    (2)去分母得:x(x-2)-(x+2)2=-16
    ∴x2-2x-x2-4x-4=-16
    ∴-6x=-12
    解得:x=2
    将x=2代入x2-4,得x2-4=0
    ∴原分式方程无解.
    本题考查学生的计算能力,解题的关键是熟练运用不等式组的解法以及分式方程的解法,本题属于基础题型.
    17、(1)见解析;(2)AGBD是矩形,理由见解析;(3)
    【解析】
    (1)由题意先证明△ADE是等边三角形,再利用菱形的判定方法进行分析证明即可;
    (2)根据题意直接运用矩形的判定方法进行分析证明即可;
    (3)由题意分别求出BD和CG的值,运用梯形的面积公式求解即可.
    【详解】
    解:(1)∵AB=2AD,E是AB的中点,
    ∴AD=AE=BE,
    又∵∠DAB=60°,
    ∴△ADE是等边三角形,故DE=BE,
    同理可得DF=BF,
    ∵平行四边形ABCD中,点E、F分别是AB、CD的中点,
    ∴BE=DF,
    ∴DE=BE=BF=DF
    即证得四边形DEBF是菱形.
    (2)AGBD是矩形.
    理由如下:∵△ADE是等边三角形,
    ∴∠DEA=60°,
    又∵DE=BE,
    ∴∠EBD=∠EDB =30°,
    ∴∠ADB=60°+30°=90°,
    又∵AG∥BD,AD∥CG,
    ∴四边形AGBD是矩形.
    (3)在Rt△ABD中,
    ∵AD=1,∠DAB=60°,
    ∴AB=2,BD==,
    则AG=,CG==2,
    故四边形AGCD的面积为.
    本题考查菱形和矩形的性质、等边三角形的判定及性质以及含60°直角三角形的性质等知识,解题的关键是弄清菱形及矩形的判定方法.
    18、(5)555;(5)56,96,5.55;(5)555.
    【解析】
    试题分析:(5)由选项D的频数58,频率5.5,根据频数、频率和总量的关系即可求得这次被调查的学生人数.
    (5)由(5)求得的这次被调查的学生人数,根据频数、频率和总量的关系即可求得表中m,n,p的值,补全条形统计图.
    (5)应用用样本估计总体计算即可.
    试题解析:(5)∵,
    ∴这次被调查的学生有555人.
    (5).
    补全条形统计图如图:
    (5)∵,
    ∴估计该校全体学生中选择B选项的有555人.
    考点:5.频数、频率统计表;5.条形统计图;5.频数、频率和总量的关系;5.用样本估计总体.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、0【解析】
    已知点P(a-1,a)是第二象限内的点,即可得到横纵坐标的符号,即可求解.
    【详解】
    ∵点P(a-1,a)是第二象限内的点,
    ∴a-1<0且a>0,
    解得:0<a<1.
    故答案为:0<a<1.
    本题主要考查了平面直角坐标系中第二象限的点的坐标的符号特点,第二象限(-,+).
    20、
    【解析】
    根据勾股定理得到BC=5,由折叠的性质得到△BCE是等腰直角三角形,过E作EH⊥AC交CA的延长线于H,根据勾股定理得到EH=,于是得到结论
    【详解】
    ∵在△ABC中,∠BAC=90°,AB=4,AC=3,
    ∴BC=5,
    ∵△BCE是△DBC沿BC翻转得到得
    ∴△BCE是等腰直角三角形,
    ∴∠BEC=90°,∠BCE=45°,CE= ,BC=
    过E作EH⊥AC交CA的延长线于H,
    易证△CEH≌△DCG,△DBF≌△DCG
    ∴EH=CG, BF=CG,
    ∵四边形AFDG和四边形BECD是正方形
    ∴AF=AG,
    设BF=CG=x,则AF=4-x,AG=3+x
    ∴4-x=3+x,
    ∴x=
    ∴EH=CG=
    ∴△ACE的面积=××3= ,
    故答案为:
    此题考查折叠问题和勾股定理,等腰直角三角形的性质,解题关键在于做辅助线
    21、3或
    【解析】
    分两种情况:①当∠EFC=90°,先判断出点F在对角线AC上,利用勾股定理求出AC,设BE=x,表示出CE,根据翻折变换的性质得到AF=AB,EF=BE,再根据Rt△CEF利用勾股定理列式求解;②当∠CEF=90°,判断四边形ABEF是正方形,根据正方形的性质即可求解.
    【详解】
    分两种情况:①当∠EFC=90°,如图1,
    ∵∠AFE=∠B=90°,∠EFC=90°,
    ∴点A、F、C共线,
    ∵矩形ABCD的边AD=4,
    ∴BC=AD=4,
    在Rt△ABC中,AC=
    设BE=x,则CE=BC-BE=4-x,
    由翻折的性质得AF=AB=3,EF=BE=x,∴CF=AC-AF=5-3=2
    在Rt△CEF中,EF2+CF2=CE2,
    即x2+22=(4-x)2,
    解得x=;
    ②当∠CEF=90°,如图2
    由翻折的性质可知∠AEB=∠AEF=45°,
    ∴四边形ABEF是正方形,
    ∴BE=AB=3,
    故BE的长为3或
    此题主要考查矩形的折叠问题,解题的关键是根据图形进行分类讨论.
    22、4
    【解析】
    延长F至G,使CG=AE,连接DG,由SAS证明△ADE≌△CDG,得出DE=DG,∠ADE=∠CDG,再证明△EDF≌△GDF,得出EF=GF,设AE=CG=x,则EF=GF=3+x,在Rt△BEF中,由勾股定理得出方程,解方程得出AE=2,从而求得BE的长即可.
    【详解】
    解:延长F至G,使CG=AE,连接DG、EF,如图所示:
    ∵四边形ABCD是正方形,
    ∴AD=AB=BC=CD=6,∠A=∠B=∠DCF=∠ADC=90°,
    ∴∠DCG=90°,
    在△ADE和△CDG中,,
    ∴△ADE≌△CDG(SAS),
    ∴DE=DG,∠ADE=∠CDG,
    ∴∠EDG=∠CDE+∠CDG=∠CDE+∠ADE=90°,
    ∵∠EDF=45°,
    ∴∠GDF=45°,
    在△EDF和△GDF中,,
    ∴△EDF≌△GDF(SAS),
    ∴EF=GF,
    ∵F是BC的中点,
    ∴BF=CF=3,
    设AE=CG=x,则EF=GF=CF+CG=3+x,
    在Rt△BEF中,由勾股定理得:,
    解得:x=2,即AE=2,
    ∴BE=AB-AE=6-2=4.
    此题考查了正方形的性质,全等三角形的判定与性质以及勾股定理,利用了方程的思想,证明三角形全等是解本题的关键.
    23、1.
    【解析】
    根据菱形的对角线互相垂直平分表示出点A、点D的坐标,再根据直线解析式求出点A移动到MN上时的x的值,从而得到m的取值,由此即可求得答案.
    【详解】
    ∵菱形ABCD的顶点C(-1,0),点B(0,2),
    ∴点A的坐标为(-1,4),点D坐标为(-2,2),
    ∵D(n,2),
    ∴n=-2,
    当y=4时,-x+5=4,
    解得x=2,
    ∴点A向右移动2+1=3时,点A在MN上,
    ∴m的值为3,
    ∴m+n=1,
    故答案为:1.
    本题考查了一次函数图象上点的坐标特征,菱形的性质,坐标与图形变化-平移,正确把握菱形的性质、一次函数图象上点的坐标特征是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、需要进货100件,每件商品应定价25元
    【解析】
    根据:每件盈利×销售件数=总盈利额;其中,每件盈利=每件售价-每件进价.建立等量关系.
    【详解】
    解:依题意(a-21)(350-10a)=400,
    整理得:a2-56a+775=0,
    解得a1=25,a2=1.
    ∵21×(1+20%)=25.2,
    ∴a2=1不合题意,舍去.
    ∴350-10a=350-10×25=100(件).
    答:需要进货100件,每件商品应定价25元.
    本题考查了一元二次方程的应用,注意需要检验结果是否符合题意.
    25、
    【解析】
    设雕像下部的设计高度为xm,那么雕像上部的高度为(2-x)m.根据雕像上部与下部的高度之比等于下部与全部的高度比,列出方程求解即可.
    【详解】
    解:设雕像下部的设计高度为xm,那么雕像上部的高度为(2-x)m.
    依题意,得
    解得(不合题意,舍去).
    经检验,是原方程的根.
    雕像下部设计的高度应该为:1.236m
    故答案为:1.236m
    本题考查了黄金分割的应用,利用黄金分割中成比例的对应线段是解决问题的关键.
    26、(1) (2)
    【解析】
    利用因式分解法求一元二次方程.
    【详解】
    解:(1)分解因式得:
    解得
    (2)移项得:
    分解因式得:
    解得:
    本题考查了一元二次方程的解法,根据题选择合适的解法是解题的关键.
    题号





    总分
    得分
    相关试卷

    2024年福建省漳州市平和第一中学数学九年级第一学期开学教学质量检测模拟试题【含答案】: 这是一份2024年福建省漳州市平和第一中学数学九年级第一学期开学教学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年福建省平和第一中学数学九上开学学业质量监测试题【含答案】: 这是一份2024年福建省平和第一中学数学九上开学学业质量监测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年上海华亭学校九上数学开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年上海华亭学校九上数学开学学业质量监测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map