|试卷下载
终身会员
搜索
    上传资料 赚现金
    常德市重点中学2024年数学九年级第一学期开学复习检测模拟试题【含答案】
    立即下载
    加入资料篮
    常德市重点中学2024年数学九年级第一学期开学复习检测模拟试题【含答案】01
    常德市重点中学2024年数学九年级第一学期开学复习检测模拟试题【含答案】02
    常德市重点中学2024年数学九年级第一学期开学复习检测模拟试题【含答案】03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    常德市重点中学2024年数学九年级第一学期开学复习检测模拟试题【含答案】

    展开
    这是一份常德市重点中学2024年数学九年级第一学期开学复习检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,直线交坐标轴于、两点,则不等式的解集为( )
    A.B.C.D.
    2、(4分)如图,在△ABC中,点D,E分别是AB,AC的中点,若BC=6,则DE等于( ).
    A.3B.4C.5D.6
    3、(4分)莒南县欲从某师范院校招聘一名“特岗教师”,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:
    根据录用程序,作为人民教师面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,你认为将录取( )
    A.甲B.乙C.丙D.丁
    4、(4分)如图,直线的解析式为,直线的解析式为,则不等式的解集是( )
    A.B.C.D.
    5、(4分)一组数据3、2、1、2、2的众数,中位数,方差分别是( )
    A.2,1,0.4B.2,2,0.4
    C.3,1,2D.2,1,0.2
    6、(4分)若式子有意义,则实数a的取值范围是( )
    A.a>﹣1B.a>﹣1且a≠2C.a≥﹣1D.a≥﹣1且a≠2
    7、(4分)今年我市某县6月1日到10日的每一天最高气温变化如折线图所示,则这10个最高气温的中位数和众数分别是( )
    A.33℃ 33℃B.33℃ 32℃C.34℃ 33℃D.35℃ 33℃
    8、(4分)如图,在▱ABCD中,连接AC,∠ABC=∠CAD=45°,AB=,则BC的长是( )
    A.B.2C.2D.4
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知一次函数y=-2x+9的图象经过点(a,3)则a=_______.
    10、(4分)二次函数的函数值自变量之间的部分对应值如下表:
    此函数图象的对称轴为_____
    11、(4分)将正比例函数的图象向上平移3个单位,所得的直线不经过第______象限.
    12、(4分)八个边长为1的正方形如图所示的位置摆放在平面直角坐标系中,经过原点的直线l将这八个正方形分成面积相等的两部分,则这条直线的解析式是_____.
    13、(4分)已知α、β是一元二次方程x2﹣2019x+1=0的两实根,则代数式(α﹣2019)(β﹣2019)=_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)等腰直角三角形OAB中,∠OAB=90°,OA=AB,点D为OA中点,DC⊥OB,垂足为C,连接BD,点M为线段BD中点,连接AM、CM,如图①.
    (1)求证:AM=CM;
    (2)将图①中的△OCD绕点O逆时针旋转90°,连接BD,点M为线段BD中点,连接AM、CM、OM,如图②.
    ①求证:AM=CM,AM⊥CM;
    ②若AB=4,求△AOM的面积.
    15、(8分)如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.
    (1)求A,B两点的坐标;
    (2)过B点作直线BP与x轴相交于P,且使OP=2OA, 求直线BP的解析式.
    16、(8分)学校要对如图所示的一块地ABCD进行绿化,已知AD=4米,CD=3米,AD⊥DC,AB=13米,BC=12米.
    (1)若连接AC,试证明:OABC是直角三角形;
    (2)求这块地的面积.
    17、(10分)一只口袋中放着若干只红球和白球,这两种球除了颜色以外没有任何其他区别,袋中的球已经搅匀,蒙上眼睛从口袋中取出一只球,取出红球的概率是.
    (1)取出白球的概率是多少?
    (2)如果袋中的白球有18只,那么袋中的红球有多少只?
    18、(10分)完成下面推理过程
    如图,已知DE∥BC,DF、BE分别平分∠ADE、∠ABC,可推得∠FDE=∠DEB的理由:
    ∵DE∥BC(已知)
    ∴∠ADE= .( )
    ∵DF、BE分别平分∠ADE、∠ABC,
    ∴∠ADF= ,
    ∠ABE= .( )
    ∴∠ADF=∠ABE
    ∴DF∥ .( )
    ∴∠FDE=∠DEB. ( )
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,矩形ABCD的对角线AC与BD相交于点O,,.若,,则四边形OCED的面积为___.
    20、(4分)已知一个反比例函数的图象与正比例函数的图象有交点,请写出一个满足上述条件的反比例函数的表达式:__________________.
    21、(4分)如图平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,∠B=50°时,∠EAF的度数是______°.
    22、(4分)如图,一次函数y=6﹣x与正比例函数y=kx的图象如图所示,则k的值为_____.
    23、(4分)若□ABCD中,∠A=50°,则∠C=_______°.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,四边形是正方形,是边上一点,是的中点,平分.
    (1)判断与的数量关系,并说明理由;
    (2)求证:;
    (3)若,求的长.
    25、(10分)已知:如图,平行四边形ABCD中,AC,BD交于点O,AE⊥BD于点E,CF⊥BD于点F.求证:OE=OF.
    26、(12分)已知:一次函数的图像经过点A(-1,2)和点B(0,4).
    (1)求这个一次函数的表达式;
    (2)请你画出平面直角坐标系,并作出本题中的一次函数的图像.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    求-kx-b<0的解集,即为kx+b>0,就是求函数值大于0时,x的取值范围.
    【详解】
    ∵要求−kx−b<0的解集,即为求kx+b>0的解集,
    ∴从图象上可以看出等y>0时,x>−3.
    故选:B
    此题考查一次函数与一元一次不等式,解题关键在于结合函数图象进行解答.
    2、A
    【解析】
    由D、E分别是AB、AC的中点可知,DE是△ABC的中位线,利用三角形中位线定理可求出DE.
    【详解】
    ∵D、E是AB、AC中点,
    ∴DE为△ABC的中位线,
    ∴ED=BC=1.
    故选A.
    本题考查了三角形的中位线定理,用到的知识点为:三角形的中位线等于三角形第三边的一半.
    3、B
    【解析】
    根据加权平均数的公式分别求出甲、乙、丙、丁四人的平均成绩,做比较后即可得出结论.
    【详解】
    甲的平均成绩为:×(86×6+90×4)=87.6(分),
    乙的平均成绩为:×(91×6+83×4)=87.8(分),
    丙的平均成绩为:×(90×6+83×4)=87.2(分),
    丁的平均成绩为:×(83×6+92×4)=86.6(分),
    ∵87.8>87.6>87.2>86.6,
    ∴乙的平均成绩最高.
    故选B.
    本题考查了加权平均数,解题的关键是能够熟练的运用加权平均数的公式求一组数据的加权平均数.本题属于基础题,难度不大,牢牢掌握加权平均数的公式是关键.
    4、D
    【解析】
    由图象可以知道,当x=m时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式解集.
    【详解】
    不等式对应的函数图象是直线在直线“下方”的那一部分,
    其对应的的取值范围,构成该不等式的解集.所以,解集应为,
    直线过这点,把代入易得,.
    故选:D.
    此题考查一次函数与一元一次不等式,解题关键在于结合函数图象进行解答.
    5、B
    【解析】
    试题解析:从小到大排列此数据为:1,2,2,2,3;数据2出现了三次最多为众数,2处在第3位为中位数.平均数为(3+2+1+2+2)÷5=2,方差为 [(3-2)2+3×(2-2)2+(1-2)2]=0.1,即中位数是2,众数是2,方差为0.1.
    故选B.
    6、D
    【解析】
    直接利用分式有意义的条件分析得出答案.
    【详解】
    解:式子有意义,则且
    解得:且
    故选:D
    本题考查了分式有意义的条件以及二次根式有意义的条件,能正确得到相关不等式是解题的关键.
    7、A
    【解析】
    试题分析:众数是在一组数据中,出现次数最多的数据,这组数据中33℃出现三次,出现的次数最多,故这组数据的众数为33℃.
    中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为31℃,32℃,32℃,33℃,33℃,33℃,34℃,34℃,35℃,35℃,∴中位数是按从小到大排列后第5,6个数的平均数,为:33℃.
    故选A.
    8、B
    【解析】
    根据平行四边形的性质可得出CD=AB=、∠D=∠CAD=45°,由等角对等边可得出AC=CD=,再利用勾股定理即可求出BC的长度.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴CD=AB=,BC=AD,∠D=∠ABC=∠CAD=45°,
    ∴AC=CD=,∠ACD=90°,即△ACD是等腰直角三角形,
    ∴BC=AD==1.
    故选:B.
    本题考查了平行四边形的性质、等腰三角形的性质以及勾股定理,根据平行四边形的性质结合∠ABC=∠CAD=45°,找出△ACD是等腰直角三角形是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、3
    【解析】
    将(a,3)代入一次函数解析式y=-2x+9进行计算即可得.
    【详解】
    把(a,3)代入一次函数解析式y=-2x+9,得
    3=-2a+9,
    解得:a=3,
    故答案为:3.
    本题考查了一次函数图象上点的坐标特征,熟知一次函数图象上的点的坐标一定满足该函数的解析式是解题的关键.
    10、x=2.
    【解析】
    根据抛物线的对称性,x=0、x=4时的函数值相等,然后列式计算即可得解.
    【详解】
    ∵x=0、x=4时的函数值都是−1,
    ∴此函数图象的对称轴为直线x==2,
    即直线x=2.
    故答案为:直线x=2.
    此题考查二次函数的性质,解题关键在于利用其对称性求解.
    11、三
    【解析】
    根据函数的平移规律,一次函数的性质,可得答案.
    【详解】
    由正比例函数的图象向上平移3个单位,得,
    一次函数经过一二四象限,不经过三象限,
    故答案为:三.
    本题考查了一次函数图象与几何变换,利用函数的平移规律:上加下减,左加右减是解题关键.
    12、y=x
    【解析】
    设直线l和八个正方形的最上面交点为A,过点A作AB⊥y轴于点B,过点A作AC⊥x轴于点C,易知OB=1,利用三角形的面积公式和已知条件求出A的坐标,再利用待定系数法可求出该直线l的解析式.
    【详解】
    设直线l和八个正方形的最上面交点为A,过点A作AB⊥y轴于点B,过点A作AC⊥x轴于点C,如图所示.
    ∵正方形的边长为1,∴OB=1.
    ∵经过原点的一条直线l将这八个正方形分成面积相等的两部分,∴两部分面积分别是4,∴三角形ABO面积是5,∴OB•AB=5,∴AB=,∴OC=,∴点A的坐标为(,1).
    设直线l的解析式为y=kx,
    ∵点A(,1)在直线l上,∴1=k,
    解得:k=,∴直线l解析式为y=x.
    故答案为:y=x.
    本题考查了待定系数法求一次函数解析式、正方形的性质以及三角形的面积,利用三角形的面积公式和已知条件求出A的坐标是解题的关键.
    13、1
    【解析】
    根据根与系数的关系可得:α+β=2019,αβ=1,将其代入(α﹣2019)(β﹣2019)=αβ-2019(α+β)+ 中即可求出结论.
    【详解】
    ∵α、β是一元二次方程x2﹣2019x+1=0的两实根,
    ∴α+β=2019,αβ=1,
    ∴(α﹣2019)(β﹣2019)=αβ-2019(α+β)+=1.
    故答案为1.
    本题考查了一元二次方程根与系数的关系,熟练运用一元二次方程根与系数的关系是解决问题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)见解析;(1)①见解析,②1
    【解析】
    (1)直接利用直角三角形斜边的中线等于斜边的一半,即可得出结论;
    (1)①延长CM交OB于T,先判断出△CDM≌△TBM得出CM=TM,DC=BT=OC,进而判断出△OAC≌△BAT,得出AC=AT,即可得出结论;
    ②先利用等腰直角三角形的性质求出再求出OD,DC=CO=,再用勾股定理得出CT,进而判断出CM=AM,得出AM=OM,进而求出ON,再根据勾股定理求出MN,即可得出结论.
    【详解】
    解:(1)证明:∵∠OAB=90°,
    ∴△ABD是直角三角形,
    ∵点M是BD的中点,
    ∴AM=BD,
    ∵DC⊥OB,
    ∴∠BCD=90°,
    ∵点M是BD的中点,
    ∴CM=BD,
    ∴AM=CM;
    (1)①如图②,
    在图①中,∵AO=AB,∠OAB=90°,
    ∴∠ABO=∠AOB=45°,
    ∵DC⊥OB,
    ∴∠OCD=90°,
    ∴∠ODC=∠AOB,
    ∴OC=CD,
    延长CM交OB于T,连接AT,
    由旋转知,∠COB=90°,DC∥OB,
    ∴∠CDM=∠TBM,
    ∵点M是BD的中点,
    ∴DM=BM,
    ∵∠CMD=∠TMB,
    ∴△CDM≌△TBM(ASA),
    ∴CM=TM,DC=BT=OC,
    ∵∠AOC=∠BOC﹣∠AOB=45°=∠ABO,
    ∵AO=AB,
    ∴△OAC≌△BAT(SAS),
    ∴AC=AT,∠OAC=∠BAT,
    ∴∠CAT=∠OAC+∠OAT=∠BAT+∠OAT=∠OAB=90°,
    ∴△CAT是等腰直角三角形,
    ∵CM=TM,
    ∴AM⊥CM,AM=CM;
    ②如图③,在Rt△AOB中,AB=4,
    ∴OA=4,OB==AB=4,
    在图①中,点D是OA的中点,
    ∴OD=OA=1,
    ∵△OCD是等腰直角三角形,
    ∴DC=CO=ODsin45°==,
    由①知,BT=CD,
    ∴BT=,
    ∴OT=OB﹣TB=3,
    在Rt△OTC中,CT==1,
    ∵CM=TM=CT==AM,
    ∵OM是Rt△COT的斜边上的中线,
    ∴OM=CT=,
    ∴AM=OM,
    过点M作MN⊥OA于N,则ON=AN=OA=1,
    根据勾股定理得,MN==1,
    ∴S△AOM=OA•MN=×4×1=1.
    此题是几何变换综合题,主要考查了旋转的性质,直角三角形的性质,全等三角形的判定和性质,勾股定理及三角函数的应用,构造出全等三角形是解本题的关键.
    15、(1)(-,0);(0,1);(2)y=x+1或y=-x+1.
    【解析】
    试题分析:(1)根据坐标轴上点的坐标特征确定A点和B点坐标;
    (2)由OA=,OP=2OA得到OP=1,分类讨论:当点P在x轴正半轴上时,则P点坐标为(1,0);当点P在x轴负半轴上时,则P点坐标为(-1,0),然后根据待定系数法求两种情况下的直线解析式.
    试题解析:(1)把x=0代入y=2x+1,得y═1,
    则B点坐标为(0,1);
    把y=0代入y=2x+1,得0=2x+1,
    解得x=-,
    则A点坐标为(-,0);
    (2)∵OA=,
    ∴OP=2OA=1,
    当点P在x轴正半轴上时,则P点坐标为(1,0),
    设直线BP的解析式为:y=kx+b,
    把P(1,0),B(0,1)代入得
    解得:
    ∴直线BP的解析式为:y=-x+1;
    当点P在x轴负半轴上时,则P点坐标为(-1,0),
    设直线BP的解析式为y=kx+b,
    把P(-1,0),B(0,1)代入得
    解得:k=1,b=1
    所以直线BP的解析式为:y=x+1;
    综上所述,直线BP的解析式为y=x+1或y=-x+1.
    考点:1.一次函数图象上点的坐标特征;2.待定系数法求一次函数解析式.
    16、(1)见解析;(2)这块地的面积是24平方米.
    【解析】
    (1)先根据勾股定理求出AC的长,再根据勾股定理的逆定理解答即可;
    (2)根据三角形的面积公式求解即可.
    【详解】
    (1)∵AD=4,CD=3,AD⊥DC,
    由勾股定理可得:AC= ,
    又∵AC2+BC2=52+122=132=AB2 ,
    ∴△ABC是直角三角形;
    (2)△ABC的面积△ACD的面积==24(m2),
    所以这块地的面积是24平方米.
    本题考查了勾股定理及勾股定理逆定理的应用,在直角三角形中,如果两条直角边分别为a和b,斜边为c,那么a2+b2=c2.反之也成立.
    17、 (1)(2)袋中的红球有6只.
    【解析】
    (1)根据取出白球的概率是1-取出红球的概率即可求出;
    (2)设有红球x个,则总求出为(x+18)个,再根据红球的概率即可列出方程,从而解出x.
    【详解】
    解:(1)=
    (2)设袋中的红球有只,
    则有
    解得
    所以,袋中的红球有6只.
    18、∠ABC;两直线平行,同位角相等;∠ADE;∠ABC;角平分线定义;DF∥BE;同位角相等,两直线平行;两直线平行,内错角相等
    【解析】
    根据平行线的性质得出∠ADE=∠ABC,根据角平分线定义得出∠ADF=∠ADE,∠ABE=∠ABC,推出∠ADF=∠ABE,根据平行线的判定得出DF∥BE即可.
    【详解】
    ∵DE∥BC(已知),
    ∴∠ADE=∠ABC(两直线平行,同位角相等),
    ∵DF、BE分别平分ADE、∠ABC,
    ∴∠ADF=∠ADE,
    ∠ABE=∠ABC(角平分线定义),
    ∴∠ADF=∠ABE,
    ∴DF∥BE(同位角相等,两直线平行),
    ∴∠FDE=∠DEB(两直线平行,内错角相等).
    故答案是:∠ABC ,两直线平行,同位角相等,∠ADE ,∠ABC,角平分线定义,BE,同位角相等,两直线平行,两直线平行,内错角相等.
    考查了平行线的性质和判定的应用,能熟记平行线的性质和判定定理是解此题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    连接OE,与DC交于点F,由四边形ABCD为矩形得到对角线互相平分且相等,进而得到OD=OC,再由两组对边分别平行的四边形为平行四边形得到OCED为平行四边形,根据邻边相等的平行四边形为菱形得到四边形OCED为菱形,得到对角线互相平分且垂直,求出菱形OCED的面积即可.
    【详解】
    解:连接OE,与DC交于点F,

    ∵四边形ABCD为矩形,
    ∴OA=OC,OB=OD,且AC=BD,即OA=OB=OC=OD,AB=CD,
    ∵OD∥CE,OC∥DE,
    ∴四边形ODEC为平行四边形,
    ∵OD=OC,
    ∴四边形OCED为菱形,
    ∴DF=CF,OF=EF,DC⊥OE,
    ∵DE∥OA,且DE=OA,
    ∴四边形ADEO为平行四边形,
    ∵AD=,AB=2,
    ∴OE=,CD=2,
    则S菱形OCED=OE•DC=××2=.
    故答案为:.
    本题考查矩形的性质,菱形的判定与性质,以及勾股定理,熟练掌握矩形的性质是解题的关键.
    20、
    【解析】
    写一个经过一、三象限的反比例函数即可.
    【详解】
    反比例函数与有交点.
    故答案为:.
    本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.
    21、1
    【解析】
    先根据平行四边形的性质,求得∠C的度数,再根据四边形内角和,求得∠EAF的度数.
    【详解】
    解:∵平行四边形ABCD中,∠B=1°,
    ∴∠C=130°,
    又∵AE⊥BC于E,AF⊥CD于F,
    ∴四边形AECF中,∠EAF=360°-180°-130°=1°,
    故答案为:1.
    本题主要考查了平行四边形的性质,解题时注意:平行四边形的邻角互补,四边形的内角和等于360°.
    22、1
    【解析】
    将点A的横坐标代入y=6﹣x可得其纵坐标的值,再将所得点A坐标代入y=kx可得k.
    【详解】
    解:设A(1,m).
    把A (1,m)代入y=6﹣x得:m=﹣1+6=4,
    把A (1,4)代入y=kx得4=1k,解得k=1.
    故答案是:1.
    本题主要考查两条直线相交或平行问题,解题的关键是熟练掌握待定系数法求函数解析式.
    23、50
    【解析】
    因为平行四边形的对角相等,所以∠C=50°,故答案为: 50°.
    二、解答题(本大题共3个小题,共30分)
    24、(1)见解析;(2)见解析;(3).
    【解析】
    (1)利用平行线的性质得出,再根据角平分线的性质即可解答
    (2)过点作交于点,连接,利用HL证明,即可解答
    (3)设,则,再利用勾股定理求出a即可解答.
    【详解】
    (1)如图所示:
    与的数量关系:,
    理由如下:

    ∵平分,

    .
    (2)如图所示:
    过点作交于点,连接.
    ∵平分,

    又是的中点,,

    在和中,


    又,

    (3)设,则,
    在中,由勾股定理得:

    解得:,

    此题考查全等三角形的判定与性质,勾股定理,角平分线的性质,平行线的性质,解题关键在于作辅助线.
    25、见解析
    【解析】
    欲证明OE=OF,只要证明△AOE≌△COF(AAS)即可.
    【详解】
    证明:∵四边形ABCD是平行四边形,
    ∴OA=OC,
    ∵AE⊥BD于点E,CF⊥BD于点F,
    ∴∠AEO=∠CFO=90°,
    在△AOE和△COF中,

    ∴△AOE≌△COF(AAS),
    ∴OE=OF.
    本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    26、(1);(2)见解析
    【解析】
    (1)设一次函数解析式为,将A,B坐标代入求出k,b的值,即可得解析式;
    (2)建立坐标系,找到A,B两点的位置,再连线即可.
    【详解】
    (1)设一次函数解析式为,
    将A(-1,2)和点B(0,4)代入得:
    解得,
    ∴一次函数解析式为
    (2)如图所示,
    本题考查求一次函数解析式与作图,熟练掌握待定系数法求函数解析式是解题的关键.
    题号





    总分
    得分
    候选人




    测试成绩
    面试
    86
    91
    90
    83
    笔试
    90
    83
    83
    92

    0
    1
    4


    4

    相关试卷

    2025届盐城市重点中学九年级数学第一学期开学复习检测模拟试题【含答案】: 这是一份2025届盐城市重点中学九年级数学第一学期开学复习检测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届怒江市重点中学数学九年级第一学期开学检测模拟试题【含答案】: 这是一份2025届怒江市重点中学数学九年级第一学期开学检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届巢湖市重点中学数学九年级第一学期开学检测模拟试题【含答案】: 这是一份2025届巢湖市重点中学数学九年级第一学期开学检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map