2023-2024学年常德市重点中学数学九上期末达标检测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.在六张卡片上分别写有,π,1.5,5,0,六个数,从中任意抽取一张,卡片上的数为无理数的概率是( )
A.B.C.D.
2.如图,已知等边△ABC的边长为4,以AB为直径的圆交BC于点F,CF为半径作圆,D是⊙C上一动点,E是BD的中点,当AE最大时,BD的长为( )
A.B.C.4D.6
3.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan∠ABC的值为( )
A.B.C.D.
4.下列计算,正确的是( )
A.a2·a3=a6B.3a2-a2=2C.a8÷a2=a4D.(a2)3=a6
5.如图,在中,两个顶点在轴的上方,点的坐标是.以点为位似中心,在轴的下方作的位似,图形,使得的边长是的边长的2倍.设点的横坐标是-3,则点的横坐标是( )
A.2B.3C.4D.5
6.若的半径为3,且点到的圆的距离是5,则点在( )
A.内B.上C.外D.都有可能
7.用求根公式计算方程的根,公式中b的值为( )
A.3B.-3C.2D.
8.用配方法解一元二次方程x2+8x-9=0,下列配方法正确的是( )
A.B.C.D.
9.如图,将△ABC放在每个小正方形的边长为1的网格中,点A,B,C均在格点上,则t
anC的值是( )
A.2B.C.1D.
10.如图,在⊙O中,弦BC // OA,AC与OB相交于点M,∠C=20°,则∠MBC的度数为( ).
A.30°B.40°
C.50°D.60°
11.已知某二次函数的图象如图所示,则这个二次函数的解析式为( )
A.y=﹣3(x﹣1)2+3B.y=3(x﹣1)2+3
C.y=﹣3(x+1)2+3D.y=3(x+1)2+3
12.已知点为反比例函数图象上的两点,当时,下列结论正确的是( )
A.B.
C.D.
二、填空题(每题4分,共24分)
13.一元二次方程x2﹣x=0的根是_____.
14.小芳参加图书馆标志设计大赛,他在边长为2的正方形ABCD内作等边△BCE,并与正方形的对角线交于F、G点,制成了图中阴影部分的标志,则这个标志AFEGD的面积是_____.
15.在菱形中,周长为,,则其面积为______.
16.(2016辽宁省沈阳市)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是______.
17.如图,将绕顶点A顺时针旋转后得到,且为的中点,与相交于,若,则线段的长度为________.
18.若一三角形的三边长分别为5、12、13,则此三角形的内切圆半径为______.
三、解答题(共78分)
19.(8分)如图是某学校体育看台侧面的示意图,看台的坡比为,看台高度为米,从顶棚的处看处的仰角,距离为米,处到观众区底端处的水平距离为米.(,,结果精确到米)
(1)求的长;
(2)求的长.
20.(8分)如图, 已知抛物线的对称轴是直线x=3,且与x轴相交于A,B两点(B点在A点右侧)与y轴交于C点 .
(1)求抛物线的解析式和A、B两点的坐标;
(2)若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),则是否存在一点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积;若不存在,试说明理由;
(3)若M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标 .
21.(8分)先阅读下列材料,然后解后面的问题.
材料:一个三位自然数 (百位数字为a,十位数字为b,个位数字为c),若满足a+c=b,则称这个三位数为“欢喜数”,并规定F()=ac.如374,因为它的百位上数字3与个位数字4之和等于十位上的数字7,所以374是“欢喜数”,∴F(374)=3×4=1.
(1)对于“欢喜数”,若满足b能被9整除,求证:“欢喜数”能被99整除;
(2)已知有两个十位数字相同的“欢喜数”m,n(m>n),若F(m)﹣F(n)=3,求m﹣n的值.
22.(10分)如图,已知抛物线y=x2+bx+c与x轴相交于A(﹣1,0),B(m,0)两点,与y轴相交于点C(0,﹣3),抛物线的顶点为D.
(1)求B、D两点的坐标;
(2)若P是直线BC下方抛物线上任意一点,过点P作PH⊥x轴于点H,与BC交于点M,设F为y轴一动点,当线段PM长度最大时,求PH+HF+CF的最小值;
(3)在第(2)问中,当PH+HF+CF取得最小值时,将△OHF绕点O顺时针旋转60°后得到△OH′F′,过点F′作OF′的垂线与x轴交于点Q,点R为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S,使得点D、Q、R、S为顶点的四边形为菱形,若存在,请直接写出点S的坐标,若不存在,请说明理由.
23.(10分)一个不透明的布袋中有完全相同的三个小球,把它们分别标号为1,2,3. 小林和小华做一个游戏,按照以下方式抽取小球:先从布袋中随机抽取一个小球,记下标号后放回布袋中搅匀,再从布袋中随机抽取一个小球, 记下标号. 若两次抽取的小球标号之和为奇数,小林赢;若标号之和为偶数,则小华赢.
(1)用画树状图或列表的方法,列出前后两次取出小球上所标数字的所有可能情况;
(2)请判断这个游戏是否公平,并说明理由.
24.(10分)如图,⊙中,弦与相交于点,,连接.
求证:⑴;
⑵.
25.(12分)全国第二届青年运动会是山西省历史上第一次举办的大型综合性运动会,太原作为主赛区,新建了很多场馆,其中在汾河东岸落成了太原水上运动中心,它的终点塔及媒体中心是一个以“大帆船”造型(如图1),外观极具创新,这里主要承办赛艇、皮划艇、龙舟等项目的比赛.“青春”数学兴趣小组为了测量“大帆船”AB的长度,他们站在汾河西岸,在与AB平行的直线l上取了两个点C、D,测得CD=40m,∠CDA=110°,∠ACB=18.5°,∠BCD=16.5°,如图1.请根据测量结果计算“大帆船”AB的长度.(结果精确到0.1m,参考数据:sin16.5°≈0.45,tan16.5°≈0.50,≈1.41,≈1.73)
26.(12分)某商店购进一批成本为每件40元的商品,经调查发现,该商品每天的销售量(件与销售单价(元之间满足一次函数关系,其图象如图所示.
(1)求该商品每天的销售量与销售单价之间的函数关系式;
(2)若商店要使销售该商品每天获得的利润等于1000元,每天的销售量应为多少件?
(3)若商店按单价不低于成本价,且不高于65元销售,则销售单价定为多少元时,才能使销售该商品每天获得的利润最大?最大利润是多少元?
参考答案
一、选择题(每题4分,共48分)
1、B
2、B
3、D
4、D
5、B
6、C
7、B
8、C
9、B
10、B
11、A
12、A
二、填空题(每题4分,共24分)
13、x1=0,x2=1
14、6-3
15、8
16、或.
17、
18、1.
三、解答题(共78分)
19、(1)24;(2)25.6
20、(1),点A的坐标为(-2,0),点B的坐标为(8,0);(2)存在点P,使△PBC的面积最大,最大面积是16,理由见解析;(3)点M的坐标为(4-2,)、(2,6)、(6,4)或(4+2,-).
21、(1)详见解析;(2)99或2.
22、(1)B(3,0),D(1,﹣4);(2);(3)存在,S的坐标为(3,0)或(﹣1,﹣2)或(﹣1,2)或(﹣1,﹣)
23、(1);(2)不公平,理由见解析
24、(1)见解析;(2)见解析.
25、 “大帆船”AB的长度约为94.8m
26、(1)y=-2x+200;(2)100件或20件;(3)销售单价定为65元时,该超市每天的利润最大,最大利润1750元
2023-2024学年鸡西市重点中学数学九上期末达标检测模拟试题含答案: 这是一份2023-2024学年鸡西市重点中学数学九上期末达标检测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
2023-2024学年泰安市重点中学数学九上期末达标检测试题含答案: 这是一份2023-2024学年泰安市重点中学数学九上期末达标检测试题含答案,共7页。试卷主要包含了方程x,下列说法正确的是,下列是一元二次方程的是等内容,欢迎下载使用。
2023-2024学年阿坝市重点中学数学九上期末检测模拟试题含答案: 这是一份2023-2024学年阿坝市重点中学数学九上期末检测模拟试题含答案,共8页。试卷主要包含了下列运算中,结果正确的是,的绝对值是等内容,欢迎下载使用。