|试卷下载
终身会员
搜索
    上传资料 赚现金
    北京市八十中学2024年数学九上开学达标检测模拟试题【含答案】
    立即下载
    加入资料篮
    北京市八十中学2024年数学九上开学达标检测模拟试题【含答案】01
    北京市八十中学2024年数学九上开学达标检测模拟试题【含答案】02
    北京市八十中学2024年数学九上开学达标检测模拟试题【含答案】03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京市八十中学2024年数学九上开学达标检测模拟试题【含答案】

    展开
    这是一份北京市八十中学2024年数学九上开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列代数式是分式的是( )
    A.B.C.D.
    2、(4分)如图,▱ABCD 的周长为 16 cm,AC,BD 相交于点 O,OE⊥AC交 AD 于点 E,则△DCE 的周长为( )
    A.4 cmB.6 cmC.8 cmD.10 cm
    3、(4分)直线y=﹣x+1不经过( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    4、(4分)如图,正方形ABCD的边长为3,E、F是对角线BD上的两个动点,且EF=,连接AE、AF,则 AE+AF 的最小值为( )
    A.B.3C.D.
    5、(4分)将一元二次方程配方后,原方程可化为( )
    A.B.C.D.
    6、(4分)如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是( )
    A.B.C.D.
    7、(4分)下列计算错误的是
    A.B.
    C.D.
    8、(4分)如图,菱形中,分别是的中点,连接,则的周长为( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)一次函数y=kx+b的图象如图所示,则不等式kx+b<0的解集为__________.
    10、(4分)我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定7名同学参加决赛,他们的决赛成绩各不相同,其中李华已经知道自己的成绩,但能否进前四名,他还必须清楚这7名同学成绩的______________(填”平均数”“众数”或“中位数”)
    11、(4分)如图,在中,为边延长线上一点,且,连结、.若的面积为1,则的面积为____.
    12、(4分)已知,则的值是_______.
    13、(4分)如图,在菱形ABCD 中,AC与BD相交于点O,点P是AB的中点,PO=2,则菱形ABCD的周长是_________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)小明想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:
    如图,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=1.2 m,CE=0.8 m,CA=30 m.(点A,E,C在同一直线上),已知小明的身高EF是1.7 m,请你帮小明求出楼高AB.(结果精确到0.1 m)
    15、(8分)列方程解应用题:某地2016年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2018年在2016年的基础上增加投入资金1600万元.从2016年到2018年,该地投入异地安置资金的年平均增长率为多少?
    16、(8分)甲、乙两人匀速从同一地点到1500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲、乙两人相距s(米),甲行走的时间为t(分),s关于t的函数图象的一部分如图所示.

    (1)求甲行走的速度;
    (2)在坐标系中,补画s关于t的函数图象的其余部分;
    (3)问甲、乙两人何时相距360米?
    17、(10分)如图1,在中,,,、分别是、边上的高,、交于点,连接.
    (1)求证:;
    (2)求的度数;
    (3)如图2,过点作交于点,探求线段、、的数量关系,并说明理由.
    18、(10分)如图,平行四边形的顶点分别在轴和轴上,顶点在反比例函数的图象上,求平行四边形的面积.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知(﹣1,y1)(﹣2,y2)(, y3)都在反比例函数y=﹣的图象上,则y1 、y2 、 y3的大小关系是________ .
    20、(4分)如图,在矩形纸片ABCD中,AB=12,BC=5,点E在AB上,将△DAE沿DE折叠,使点A落在对角线BD上的点A′处,则AE的长为 .
    21、(4分)若关于x的一元二次方程x2﹣2kx+1-4k=0有两个相等的实数根,则代数式(k-2)2+2k(1-k)的值为______.
    22、(4分)计算:__.
    23、(4分)在△ABC中,AC=BC=,AB=2,则△ABC中的最小角是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,菱形ABCD的对角线AC和BD相交于点O,AB=,OA=a,OB=b,且a,b满足:.
    (1)求菱形ABCD的面积;
    (2)求的值.
    25、(10分)如图,在□ABCD 中,E、F为对角线AC上的两点,且AE=CF.
    (1)求证:四边形DEBF是平行四边形;
    (2)如果DE=3,EF=4,DF=5,求EB、DF两平行线之间的距离.
    26、(12分)如图,将矩形纸沿着CE所在直线折叠,B点落在B’处,CD与EB’交于点F,如果AB=10cm,AD=6cm,AE=2cm,求EF的长。
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.
    【详解】
    、、的分母中均不含有字母,因此它们是整式,而不是分式;
    分母中含有字母,因此是分式.
    故选:D.
    考查分式的定义,掌握分式的定义是判断代数式是不是分式的前提.
    2、C
    【解析】
    根据平行四边形性质得出AD=BC,AB=CD,OA=OC,根据线段垂直平分线性质得出AE=CE,求出CD+DE+EC=AD+CD,代入求出即可.
    【详解】
    ∵平行四边形ABCD,∴AD=BC,AB=CD,OA=OC.
    ∵EO⊥AC,∴AE=EC.
    ∵AB+BC+CD+AD=16cm,∴AD+DC=8cm,∴△DCE的周长是:CD+DE+CE=AE+DE+CD=AD+CD=8(cm).
    故选C.
    本题考查了平行四边形性质、线段垂直平分线性质的应用,关键是求出AE=CE,主要培养学生运用性质进行推理的能力.
    3、C
    【解析】
    由k=﹣1<0,b=1>0,即可判断出图象经过的象限.
    【详解】
    解:∵直线y=﹣x+1中,k=﹣1<0,b=1>0,
    ∴直线的图象经过第一,二,四象限.
    ∴不经过第三象限,
    故选:C.
    本题考查了一次函数的图象,掌握一次函数图象与系数的关系是解题的关键.
    4、A
    【解析】
    如图作AH∥BD,使得AH=EF=,连接CH交BD于F,则AE+AF的值最小.
    【详解】
    解:如图作AH∥BD,使得AH=EF=,连接CH交BD于F,则AE+AF的值最小.
    ∵AH=EF,AH∥EF,
    ∴四边形EFHA是平行四边形,
    ∴EA=FH,
    ∵FA=FC,
    ∴AE+AF=FH+CF=CH,
    ∵四边形ABCD是正方形,
    ∴AC⊥BD,∵AH∥DB,
    ∴AC⊥AH,
    ∴∠CAH=90°,
    在Rt△CAH中,CH= =2 ,
    ∴AE+AF的最小值2,
    故选:A.
    本题考查轴对称-最短问题,正方形的性质、勾股定理、平行四边形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.
    5、C
    【解析】
    根据配方法对进行计算,即可解答本题.
    【详解】
    解:∵x2﹣4x+1=0,
    ∴(x﹣2)2﹣4+1=0,
    ∴(x﹣2)2=3,
    故选:C.
    本题考查解一元二次方程﹣配方法,解答本题的关键是明确解一元二次方程的方法.
    6、D
    【解析】
    开始一段时间内,乙不进行水,当甲的水到过连接处时,乙开始进水,此时水面开始上升,速度较快,水到达连接的地方,水面上升比较慢,最后水面持平后继续上升,
    故选D.
    7、A
    【解析】
    根据根式的计算法则逐个识别即可.
    【详解】
    A 错误,;
    B. ,正确;
    C. ,正确
    D. ,正确
    故选A.
    本题主要考查根式的计算,特别要注意算术平方根的计算.
    8、D
    【解析】
    首先根据菱形的性质证明△ABE≌△ADF,然后连接AC可推出△ABC以及△ACD为等边三角形.根据等边三角形三线合一的性质又可推出△AEF是等边三角形.根据勾股定理可求出AE的长,继而求出周长.
    【详解】
    解:∵四边形ABCD是菱形,
    ∴AB=AD=BC=CD=2cm,∠B=∠D,
    ∵E、F分别是BC、CD的中点,
    ∴BE=DF,
    在△ABE和△ADF中,,
    ∴△ABE≌△ADF(SAS),
    ∴AE=AF,∠BAE=∠DAF.
    连接AC,
    ∵∠B=∠D=60°,
    ∴△ABC与△ACD是等边三角形,
    ∴AE⊥BC,AF⊥CD,
    ∴∠BAE=∠DAF=30°,
    ∴∠EAF=60°,BE=AB=1cm,
    ∴△AEF是等边三角形,AE=,
    ∴周长是.
    故选:D.
    本题主要考查了菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质以及勾股定理,涉及知识点较多,也考察了学生推理计算的能力.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、x<1
    【解析】
    解:∵y=kx+b,kx+b<0,∴y<0,由图象可知:x<1.故答案为x<1.
    10、中位数
    【解析】
    七名选手的成绩,如果知道中位数是多少,与自己的成绩相比较,就能知道自己是否能进入前四名,因为中位数是七个数据中的第四个数,
    【详解】
    解:因为七个数据从小到大排列后的第四个数是这七个数的中位数,知道中位数,然后与自己的成绩比较,就知道能否进入前四,即能否参加决赛.
    故答案为:中位数.
    考查中位数、众数、平均数反映一组数据的特征,中位数反映之间位置的数,说明比它大的占一半,比它小的占一半;众数是出现次数最多的数,平均数反映一组数据的平均水平和集中趋势,理解意义是正确判断的前提.
    11、3
    【解析】
    首先根据平行四边形的性质,可得AD=BC,又由,可得BE=3BC=3AD,和的高相等,即可得出的面积.
    【详解】
    解:∵,
    ∴AD=BC,AD∥BC,
    ∴和的高相等,
    设其高为,
    又∵,
    ∴BE=3BC=3AD,
    又∵,

    故答案为3.
    此题主要考查利用平行四边形的性质进行等量转换,即可求得三角形的面积.
    12、
    【解析】
    先对原式进行化简,然后代入a,b的值计算即可.
    【详解】




    ∴原式= ,
    故答案为:.
    本题主要考查二次根式的运算,掌握完全平方公式和平方差是解题的关键.
    13、1
    【解析】
    根据菱形的性质可得AC⊥BD,AB=BC=CD=AD,再根据直角三角形的性质可得AB=2OP,进而得到AB长,然后可算出菱形ABCD的周长.
    【详解】
    ∵四边形ABCD是菱形,
    ∴AC⊥BD,AB=BC=CD=AD,
    ∵点P是AB的中点,
    ∴AB=2OP,
    ∵PO=2,
    ∴AB=4,
    ∴菱形ABCD的周长是:4×4=1,
    故答案为:1.
    此题主要考查了菱形的性质,关键是掌握菱形的两条对角线互相垂直,四边相等,此题难度不大.
    三、解答题(本大题共5个小题,共48分)
    14、21.1米.
    【解析】
    试题分析:将实际问题转化为数学问题进行解答;解题时要注意构造相似三角形,利用相似三角形的相似比,列出方程,通过解方程求解即可.
    解:过点D作DG⊥AB,分别交AB、EF于点G、H,
    ∵AB∥CD,DG⊥AB,AB⊥AC,
    ∴四边形ACDG是矩形,
    ∴EH=AG=CD=1.2,DH=CE=1.8,DG=CA=31,
    ∵EF∥AB,
    ∴,
    由题意,知FH=EF﹣EH=1.7﹣1.2=1.5,
    ∴,解得,BG=18.75,
    ∴AB=BG+AG=18.75+1.2=19.95≈21.1.
    ∴楼高AB约为21.1米.
    考点:相似三角形的应用.
    15、从2015年到2017年,该地投入异地安置资金的年平均增长率为50%.
    【解析】
    设年平均增长率为x,根据:2016年投入资金×(1+增长率)2=2018年投入资金,列出方程求解可得.
    【详解】
    解:设该地投入异地安置资金的年平均增长率为x.
    根据题意得:1280(1+x)2=1280+1600.
    解得x1=0.5=50%,x2=-2.5(舍去),
    答:从2016年到2018年,该地投入异地安置资金的年平均增长率为50%.
    本题考查了一元二次方程的应用,由题意准确找出相等关系并据此列出方程是解题的关键.
    16、(1)30米/分;(2)见解析;(3)当甲行走30.5分钟或38分钟时,甲、乙两人相距360米.
    【解析】
    (1)由图象可知t=5时,s=11米,根据速度=路程÷时间,即可解答;
    (2)根据图象提供的信息,可知当t=35时,乙已经到达图书馆,甲距图书馆的路程还有(110-101)=41米,甲到达图书馆还需时间;41÷30=15(分),所以35+15=1(分),所以当s=0时,横轴上对应的时间为1.
    (3)分别求出当12.5≤t≤35时和当35<t≤1时的函数解析式,根据甲、乙两人相距360米,即s=360,分别求出t的值即可.
    【详解】
    (1)甲行走的速度:11÷5=30(米/分);
    (2)当t=35时,甲行走的路程为:30×35=101(米),乙行走的路程为:(35-5)×1=110(米),
    ∴当t=35时,乙已经到达图书馆,甲距图书馆的路程还有(110-101)=41米,
    ∴甲到达图书馆还需时间;41÷30=15(分),
    ∴35+15=1(分),
    ∴当s=0时,横轴上对应的时间为1.
    补画的图象如图所示(横轴上对应的时间为1),
    (3)如图,
    设乙出发经过x分和甲第一次相遇,根据题意得:11+30x=1x,
    解得:x=7.5,
    7.5+5=12.5(分),
    由函数图象可知,当t=12.5时,s=0,
    ∴点B的坐标为(12.5,0),
    当12.5≤t≤35时,设BC的解析式为:s=kt+b,(k≠0),
    把C(35,41),B(12.5,0)代入可得:

    解得:,
    ∴s=20t-21,
    当35<t≤1时,设CD的解析式为s=k1x+b1,(k1≠0),
    把D(1,0),C(35,41)代入得:

    解得:
    ∴s=-30t+110,
    ∵甲、乙两人相距360米,即s=360,
    解得:t1=30.5,t2=38,
    ∴当甲行走30.5分钟或38分钟时,甲、乙两人相距360米.
    本题考查了行程问题的数量关系的运用,一次函数的解析式的运用,解答时求出函数的解析式是关键.
    17、(1)证明见详解;(2)45°;(3)BC+BE=2BG,理由见详解.
    【解析】
    (1)作FH⊥BC于H,由等腰三角形的性质得出∠ABD=∠CBD,BD⊥AC,由角平分线的性质得出EF=HF,∠BEF=90°=∠BHF,证明△BEF≌△BHF,得出BE=BH,证出△BCE是等腰直角三角形,得出∠BCE=45°,BE=EC=BH,证出△CFH是等腰直角三角形,得出CH=HF=EF,即可得出结论;
    (2)由BD平分∠ABC,得到∠ABD的度数,然后求得∠BFE,由直角三角形斜边上的中线定理,可得DE=CD,可得∠DEF=∠DCF=22.5°,然后根据外角定理,即可求得∠BDE;
    (3)由(2)知,∠ADE=∠ABC=45°,由等腰三角形的性质得出∠A=∠ACB=67.5°,由三角形内角和定理得出∠AED=180°-∠A-∠ADE=67.5°,得出∠AED=∠A,证出DA=DE,由等腰三角形的性质得出AG=EG,即可得出结论.
    【详解】
    (1)证明:作FH⊥BC于H,如图所示:
    则∠BHF=90°,
    ∵AB=BC,BD是AC边上的高,
    ∴∠ABD=∠CBD,BD⊥AC,
    ∵CE是AB边上的高,
    ∴CE⊥AB,
    ∴EF=HF,∠BEF=90°=∠BHF,
    在△BEF和△BHF中,
    ∴△BEF≌△BHF(AAS),
    ∴BE=BH,
    ∵∠ABC=45°,
    ∴△BCE是等腰直角三角形,
    ∴∠BCE=45°,BE=EC=BH,
    ∴△CFH是等腰直角三角形,
    ∴CH=HF=EF,
    ∴EC+EF=BH+CH=BC;
    (2)解:如图,
    由(1)知,BD平分∠ABC,∠ABC=45°,
    ∴∠ABF=22.5°,
    ∴∠BFE=90°-22.5°=67.5°,
    ∵AB=BC,∠ABC=45°,
    ∴∠A=,
    在直角三角形ACE中,D是AC中点,
    ∴DE=CD=AD,
    ∴∠DEF=∠DCF=90°-67.5°=22.5°,
    ∴∠BDE=∠BFE-∠DEF=67.5°-22.5°=45°;
    (3)解:BC+BE=2BG,理由如下:如图,
    由(2)得:∠DEF=∠DCF=22.5°
    ∴∠ADE=∠ABC=45°,
    ∵AB=BC,∠ABC=45°,
    ∴∠A=∠ACB=67.5°,
    ∴∠AED=180°-∠A-∠ADE=67.5°,
    ∴∠AED=∠A,
    ∴DA=DE,
    ∵DG⊥AE,
    ∴AG=EG,
    ∵BC=AB=BE+AE=BE+2EG=BG+EG,EG=BG-BE,
    ∴BC=BG+BG-BE,
    ∴BC+BE=2BG.
    本题是三角形综合题目,考查了全等三角形的判定与性质、等腰三角形的性质与判定、等腰直角三角形的判定与性质、角平分线的性质、直角三角形斜边上的中线等;本题综合性强,熟练掌握等腰三角形的性质,证明三角形全等和等腰直角三角形是解题的关键.
    18、3
    【解析】
    根据题意可知B点的横坐标和纵坐标分别是平行四边形的底和高,根据平行四边形的面积公式及反比例函数系数的几何意义,即可得出.
    【详解】
    ∵平行四边形ABOC定点A、C分别在y轴和x轴上,顶点B在反比例函数y= 的图象上,设B点横坐标为a,则纵坐标为 ,
    ∴S平行四边形AB0C=AB∙OA=a∙=3,
    故本题答案为:3.
    本题考查了反比例函数系数k的几何意义以及平行四边形的面积公式,根据反比例函数系数k的几何意义找出S平行四边形 ABOC=|k|.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    先根据反比例函数的解析式判断出函数图象所在的象限及其增减性,再由各点横坐标的值即可得出结论.
    【详解】
    ∵反比例函数y=−2x中,k=−2<0,
    ∴函数图象的两个分支分别位于二、四象限,且在每一象限内,y随x的增大而增大。
    ∵−2<−1<0,12>0,
    ∴点A(−2,y2),B(−1,y1)在第二象限,点C(12,y3)在第四象限,
    ∴y3故答案为:y3本题考查反比例函数图象所在的象限及其增减性,当k<0时函数图象两个分支分别在第二、三象限内,y随x的增大而增大;当k>0时函数图象两个分支分别在第一、四象限内,y随x的增大而减小.
    20、
    【解析】
    试题分析:∵AB=12,BC=1,∴AD=1.
    ∴.
    根据折叠可得:AD=A′D=1,∴A′B=13-1=2.
    设AE=x,则A′E=x,BE=12-x,
    在Rt△A′EB中:,解得:.
    21、
    【解析】
    根据题意可得一元二次方程根的判别式为0,列出含k的等式,再将所求代数进行变形后整体代入求值即可.
    【详解】
    解:∵一元二次方程x2﹣2kx+1-4k=0有两个相等的实数根,
    ∴ ,
    整理得, ,

    当时,
    故答案为:.
    本题考查一元二次方程根的判别式与根个数之间的关系,根据根的个数确定根的判别式的符号是解答此题的关键.
    22、-
    【解析】
    直接利用二次根式的性质分别计算得出答案.
    【详解】
    解:原式

    故答案为:.
    此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.
    23、45°.
    【解析】
    根据勾股定理得到逆定理得到△ABC是等腰直角三角形,根据等腰直角三角形的性质即可的结论.
    【详解】
    解:∵AC=BC=,AB=2,
    ∴AC2+BC2=2+2=4=22=AB2,
    ∴△ABC是等腰直角三角形,
    ∴△ABC中的最小角是45°;
    故答案为:45°.
    本题考查了等腰直角三角形,勾股定理的逆定理,熟练掌握勾股定理的逆定理是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)4;(2)
    【解析】
    (1)首先根据菱形的性质得到AC和BD垂直平分,结合题意可得a2+b2=5,进而得到ab=2,结合图形的面积公式即可求出面积;
    (2)根据a2+b2=5,ab=2得到a+b的值,进而求出答案.
    【详解】
    解:(1)∵四边形ABCD是菱形,
    ∴BD垂直平分AC,
    ∵OA=a,OB=b,AB=,
    ∴a2+b2=5,
    ∵a,b满足:.
    ∴a2b2=4,
    ∴ab=2,
    ∴△AOB的面积=ab=1,
    ∴菱形ABCD的面积=4△AOB的面积=4;
    (2)∵a2+b2=5,ab=2,
    ∴(a+b)2=a2+b2+2ab=7,
    ∴a+b=,
    ∴=.
    本题主要考查了菱形的性质,解题的关键是根据菱形的对角线垂直平分得到a和b的数量关系,此题是一道非常不错的试题.
    25、(1)详见解析;(2)2.1.
    【解析】
    (1)根据平行四边形的性质可得AD=BC,AD∥BC,继而可得∠DAE=∠BCF,然后即可利用SAS证明△ADF≌△CBE,进一步即可证明DF=EB,DF∥EB,即可证得结论;
    (2)先根据勾股定理的逆定理得出DE⊥EF,然后根据三角形的面积即可求出结果.
    【详解】
    (1)证明:∵四边形ABCD是平行四边形,
    ∴AD=BC,AD∥BC,∴∠DAE=∠BCF,
    ∵AE=CF,∴AF=CE,
    ∴△ADF≌△CBE(SAS),
    ∴DF=EB,∠DFA=∠BEC,
    ∴DF∥EB,
    ∴四边形DEBF是平行四边形;
    (2)解:∵,,
    ∴,∴DE⊥EF.
    过点E作EG⊥DF于G,如图,则,即3×1=EG×5,∴EG=2.1.
    ∴EB、DF两平行线之间的距离为2.1.
    本题考查了平行四边形的性质和判定、全等三角形的判定和性质、两平行线之间的距离的定义、勾股定理的逆定理和三角形的面积等知识,属于常见题型,熟练掌握平行四边形的判定和性质是解题的关键.
    26、
    【解析】
    首先根据题意证明EF=CF,再作过E作EG⊥CD于G,设EF=CF=x,在Rt△EFG中根据勾股定理求解即可.
    【详解】
    解:根据题意,∠CEF=∠CEB,
    ∵AB∥CD,
    ∴∠CEB=∠ECD,
    ∴∠CEF∠ECD,
    ∴EF=CF,
    过E作EG⊥CD于G,
    设EF=CF=x,
    则GF=AB-AE-EF=10-2-x=8-x,
    在Rt△EFG中,EF2=GF2+EG2,
    ∴x2=(8-x)2+62,
    ∴x=,
    ∴EF=cm.
    本题主要考查勾股定理的应用,关键在于设出合适的未知数,根据勾股定理列方程.
    题号





    总分
    得分
    批阅人
    相关试卷

    北京市北京一零一中学2024年九上数学开学达标检测模拟试题【含答案】: 这是一份北京市北京一零一中学2024年九上数学开学达标检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    北京八十中学2024-2025学年数学九上开学检测模拟试题【含答案】: 这是一份北京八十中学2024-2025学年数学九上开学检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届北京市一零一中学数学九上开学达标检测模拟试题【含答案】: 这是一份2025届北京市一零一中学数学九上开学达标检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map