终身会员
搜索
    上传资料 赚现金

    北京十一中学分校2024年九上数学开学监测模拟试题【含答案】

    立即下载
    加入资料篮
    北京十一中学分校2024年九上数学开学监测模拟试题【含答案】第1页
    北京十一中学分校2024年九上数学开学监测模拟试题【含答案】第2页
    北京十一中学分校2024年九上数学开学监测模拟试题【含答案】第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京十一中学分校2024年九上数学开学监测模拟试题【含答案】

    展开

    这是一份北京十一中学分校2024年九上数学开学监测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)关于x的分式方程=1的解为正数,则字母a的取值范围为( )
    A.a≥﹣1B.a>﹣1C.a≤﹣1D.a<﹣1
    2、(4分)下列选项中,能使分式值为的的值是( )
    A.B.C.或D.
    3、(4分)直角三角形两条直角边分别是和,则斜边上的中线等于( )
    A.B.13C.6D.
    4、(4分)在平面直角坐标系中,点P(2,﹣3)关于y轴对称的点的坐标是( )
    A.(﹣2,﹣3)B.(﹣2,3)C.(2,3)D.(2,﹣3)
    5、(4分)将多项式-6a3b2-3a2b2+12a2b3分解因式时,应提取的公因式是( )
    A.-3a2b2 B.-3ab C.-3a2b D.-3a3b3
    6、(4分)如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,CD⊥AB于D,则CD的长是( )
    A.5B.7C.D.
    7、(4分)若与最简二次根式是同类二次根式,则m的值为( )
    A.7B.11C.2D.1
    8、(4分)小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意,得
    A.B.
    C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差:
    根据表中数据,要从甲、乙、丙、丁中选择一名成绩好又发挥稳定的运动员参加决赛,应该选择__________.
    10、(4分)如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:
    ①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD
    其中正确结论的为______(请将所有正确的序号都填上).
    11、(4分)在Rt△ABC中,∠C=90°,若a=6,b=8,则c=________.
    12、(4分)若一个正多边形的内角和是其外角和的3倍,则这个多边形的边数是______.
    13、(4分)如图所示,小明从坡角为30°的斜坡的山底(A)到山顶(B)共走了100米,则山坡的高度BC为_____米.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,四边形是平行四边形,是边上一点.
    (1)只用无刻度直尺在边上作点,使得,保留作图痕迹,不写作法;
    (2)在(1)的条件下,若,,求四边形的周长.
    15、(8分)先化简,再求值:当m=10时,求的值.
    16、(8分)如图,将平行四边形的对角线向两个方向延长,分别至点和点,且使.求证:四边形是平行四边形.
    17、(10分)抛物线y=x2+bx+c的对称轴为直线x=1,该抛物线与x轴的两个交点分别为A和B,与y轴的交点为C,其中A(-1,0).
    (1)写出B点的坐标 ;
    (2)求抛物线的函数解析式;
    (3)若抛物线上存在一点P,使得△POC的面积是△BOC的面积的2倍,求点P的坐标;
    (4)点M是线段BC上一点,过点M作x轴的垂线交抛物线于点D,求线段MD长度的最大值.
    18、(10分)已知y=y1+y2,y1与x成正比例,y2与x成反比例,且当x=1时,y=3;当x=时,y=1.求x=-时,y的值.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若正n边形的内角和等于它的外角和,则边数n为_____.
    20、(4分)已知54-1能被20~30之间的两个整数整除,则这两个整数是_________.
    21、(4分)如图,在中,,,,点在上,以为对角线的所有中,的最小值是____.
    22、(4分)已知实数满足,则以的值为两边长的等腰三角形的周长是_________________.
    23、(4分)化简的结果为______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)计算:
    (1)+﹣
    (2)2÷5
    (3)(+3﹣)÷
    (4)(2﹣3)2﹣(4+3)(4﹣3)
    25、(10分)先化简,再求值:其中,
    26、(12分)数形结合是一种重要的数学思想,我们不但可以用数来解决图形问题,同样也可以用借助图形来解决数量问题,往往能出奇制胜,数轴和勾股定理是数形结合的典范.数轴上的两点A和B所表示的数分别是和,则A,B两点之间的距离;坐标平面内两点,,它们之间的距离.如点,,则.表示点与点之间的距离,表示点与点和的距离之和.
    (1)已知点,,________;
    (2)表示点和点之间的距离;
    (3)请借助图形,求的最小值.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    解:分式方程去分母得:2x-a=x+1,解得:x=a+1.
    根据题意得:a+1>3且a+1+1≠3,解得:a>-1且a≠-2.
    即字母a的取值范围为a>-1.故选B.
    点睛:本题考查了分式方程的解,本题需注意在任何时候都要考虑分母不为3.
    2、D
    【解析】
    根据分子等于0,且分母不等于0列式求解即可.
    【详解】
    由题意得

    解得
    x=-1.
    故选D.
    本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子的值为0,②分母的值不为0,这两个条件缺一不可.
    3、A
    【解析】
    根据勾股定理可求得直角三角形斜边的长,再根据直角三角形斜边上的中线等于斜边的一半即可求解.
    【详解】
    解:∵直角三角形两直角边长为5和12,
    ∴斜边==13,
    ∴此直角三角形斜边上的中线等于.
    故选:A.
    此题主要考查勾股定理及直角三角形斜边上的中线的性质;熟练掌握勾股定理,熟记直角三角形斜边上的中线的性质是解决问题的关键.
    4、A
    【解析】
    根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.
    【详解】
    解:点P(2,﹣3)关于y轴对称的点的坐标是(﹣2,﹣3),
    故选:A.
    此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标的变化规律.
    5、A
    【解析】
    在找公因式时,一找系数的最大公约数,二找相同字母的最低次幂.同时注意首项系数通常要变成正数.
    6、C
    【解析】
    首先利用勾股定理计算出AB的长,再根据三角形的面积公式计算出CD的长即可.
    【详解】
    解:∵在Rt中,∠ACB=90°,AC=4,BC=3,
    ∴AB=
    ∵ ×AC×BC= ×CD×AB,
    ∴ ×3×4=×5×CD,
    解得:CD=.
    故选.
    本题主要考查了勾股定理,以及三角形的面积,关键是熟练掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和等于斜边长的平方.
    7、C
    【解析】
    几个二次根式化为最简二次根式后,如果被开方数相同,则这几个二次根式即为同类二次根式.
    【详解】
    解:,当m=7时,,故A错误;当m=11时,,此时不是最简二次根式,故B错误;当m=1时,,故D错误;
    当m=2时,,故C正确;
    故选择C.
    本题考查了同类二次根式的定义.
    8、A
    【解析】
    若设走路线一时的平均速度为x千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程.
    解:设走路线一时的平均速度为x千米/小时,
    故选A.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、丙
    【解析】
    由表中数据可知,丙的平均成绩和甲的平均成绩最高,而丙的方差也是最小的,成绩最稳定,所以应该选择:丙.
    故答案为丙.
    10、①③④
    【解析】
    根据已知先判断△ABC≌△EFA,则∠AEF=∠BAC,得出EF⊥AC,由等边三角形的性质得出∠BDF=30°,从而证得△DBF≌△EFA,则AE=DF,再由FE=AB,得出四边形ADFE为平行四边形而不是菱形,根据平行四边形的性质得出AD=4AG,从而得到答案.
    【详解】
    解:∵△ACE是等边三角形,
    ∴∠EAC=60°,AE=AC,
    ∵∠BAC=30°,
    ∴∠FAE=∠ACB=90°,AB=2BC,
    ∵F为AB的中点,
    ∴AB=2AF,
    ∴BC=AF,
    ∴△ABC≌△EFA,
    ∴FE=AB,
    ∴∠AEF=∠BAC=30°,
    ∴EF⊥AC,故①正确,
    ∵EF⊥AC,∠ACB=90°,
    ∴HF∥BC,
    ∵F是AB的中点,
    ∴HF=BC,
    ∵BC=AB,AB=BD,
    ∴HF=BD,故④说法正确;
    ∵AD=BD,BF=AF,
    ∴∠DFB=90°,∠BDF=30°,
    ∵∠FAE=∠BAC+∠CAE=90°,
    ∴∠DFB=∠EAF,
    ∵EF⊥AC,
    ∴∠AEF=30°,
    ∴∠BDF=∠AEF,
    ∴△DBF≌△EFA(AAS),
    ∴AE=DF,
    ∵FE=AB,
    ∴四边形ADFE为平行四边形,
    ∵AE≠EF,
    ∴四边形ADFE不是菱形;
    故②说法不正确;
    ∴AG=AF,
    ∴AG=AB,
    ∵AD=AB,
    则AD=4AG,故③说法正确,
    故答案为①③④.
    考点:菱形的判定;等边三角形的性质;含30度角的直角三角形.
    11、10
    【解析】
    根据勾股定理
    c为三角形边长,故c=10.
    12、8
    【解析】
    解:设边数为n,由题意得,
    180(n-2)=3603
    解得n=8.
    所以这个多边形的边数是8.
    13、1
    【解析】
    直接利用坡角的定义以及结合直角三角中30°所对的边与斜边的关系得出答案.
    【详解】
    由题意可得:AB=100m,∠A=30°,
    则BC=AB=1(m).
    故答案为:1.
    此题主要考查了解直角三角形的应用,正确得出BC与AB的数量关系是解题关键.
    三、解答题(本大题共5个小题,共48分)
    14、 (1)见解析;(2)1.
    【解析】
    (1)如图,连接,交于点,作直线交于点,点即为所求;
    (2)求出,即可解决问题.
    【详解】
    (1)如图,点即为所求;
    (2),,




    四边形是平行四边形,
    ,,
    平行四边形的周长为1.
    本题考查作图——复杂作图,平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题.
    15、.
    【解析】
    首先将原式的分子与分母分解因式,进而化简求出答案.
    【详解】



    = ,
    当m=10时,原式==.
    此题考查分式的化简求值,解题关键在于掌握运算法则
    16、详见解析
    【解析】
    由四边形ABCD是平行四边形易知OA=OC,OC=OD,再证得OE=OF,即可得出结论.
    【详解】
    证明:连接,设与交于点
    四边形是平行四边形.


    四边形是平行四边形,
    此题考查了平行四边形的性质和判定,全等三角形的判定和性质,解题时要注意选择适宜的判定方法.
    17、(1)B(3,0);(2)y=x2−2x−3;(3)P(6,21)或(−6,45);(4).
    【解析】
    (1)函数的对称轴为:x=1,点A(−1,0),则点B(3,0);
    (2)用两点式求解即可;
    (3)△POC的面积是△BOC的面积的2倍,则|xP|=2OB=6,即可求解;
    (4)易得直线BC的表达式,设出点M(x,x−3),则可得MD=x−3−(x2−2x−3)=−x2+3x,然后求二次函数的最值即可.
    【详解】
    解:(1)函数的对称轴为:x=1,点A(−1,0),则点B(3,0),
    故答案为(3,0);
    (2)函数的表达式为:y=(x+1)(x−3)=x2−2x−3;
    (3)△POC的面积是△BOC的面积的2倍,则|xP|=2OB=6,
    当x=6时,y=36−12−3=21,
    当x=−6时,y=36+12−3=45,
    故点P(6,21)或(−6,45);
    (4)∵B(3,0),C(0,-3),
    易得直线BC的表达式为:y=x−3,
    设点M(x,x−3),则点D(x,x2−2x−3),
    ∴MD=x−3−(x2−2x−3)=−x2+3x,
    ∵−1<0,
    ∴MD有最大值,
    ∴当x=时,其最大值为:.
    本题考查的是二次函数综合运用,涉及到待定系数法求函数解析式,图形的面积计算以及二次函数的最值问题等,难度不大,熟练掌握相关知识点即可解答.
    18、y=-1
    【解析】
    设,,则,利用待定系数法求出的值,可得,再把代入求解即可.
    【详解】
    解:设,,则.
    把,,,分别代入上式得.
    解得,.
    ∴.
    ∴当,.
    本题考查了正比例函数和反比例函数的问题,掌握正比例函数和反比例函数的性质、待定系数法是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    设这个多边形的边数为n,则依题意可列出方程(n﹣2)×180°=360°,从得出答案.
    【详解】
    解:设这个多边形的边数为n,则依题意可得:
    (n﹣2)×180°=360°,
    解得,n=1.
    故答案为:1.
    本题考查的知识点是正多边形的内角和与外角和,熟记正多边形内角和的计算公式是解此题的关键.
    20、24,26
    【解析】
    将54-1利用分解因式的知识进行分解,再结合题目54-1能被20至30之间的两个整数整除即可得出答案.
    【详解】
    54−1=(5+1)(5−1)
    ∵54−1能被20至30之间的两个整数整除,
    ∴可得:5+1=26,5−1=24.
    故答案为:24,26
    此题考查因式分解的应用,解题关键在于掌握运算法则
    21、6
    【解析】
    由平行四边形的对角线互相平分、垂线段最短知,当OD⊥BC时,DE线段取最小值.
    【详解】
    ∵四边形ADCE是平行四边形,
    ∴OD=OE,OA=OC.
    ∴当OD取最小值时,DE线段最短,此时OD⊥BC.
    ∴OD是△ABC的中位线,
    ∴,,
    ∴,
    ∵在Rt△ABC中,∠B=90°,
    ,,
    ∴,
    ∴.
    故答案为:6.
    本题考查了平行四边形的性质,三角形中位线的性质以及垂线段最短的知识.正确理解DE最小的条件是关键.
    22、19
    【解析】
    先根据非负数的性质求得x、y的值,然后再根据等腰三角形的性质以及三角形三边关系进行讨论即可得.
    【详解】
    根据题意得,x-3=0,y-8=0,
    解得x=3,y=8,
    ①3是腰长时,三角形的三边分别为3、3、8,
    ∵3+3

    相关试卷

    北京十一中学分校2025届数学九上开学监测模拟试题【含答案】:

    这是一份北京十一中学分校2025届数学九上开学监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    北京十三中学分校2024年九上数学开学质量跟踪监视试题【含答案】:

    这是一份北京十三中学分校2024年九上数学开学质量跟踪监视试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    北京朝阳人大附朝阳分校2024年数学九上开学学业质量监测模拟试题【含答案】:

    这是一份北京朝阳人大附朝阳分校2024年数学九上开学学业质量监测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map