2025届重庆市巫山县九上数学开学检测试题【含答案】
展开
这是一份2025届重庆市巫山县九上数学开学检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图1是由个全等的边长为的正方形拼成的图形,现有两种不同的方式将它沿着虚线剪开,甲将它分成三块,乙将它分成四块,各自要拼一个面积是的大正方形,则( )
A.甲、乙都可以B.甲可以,乙不可以
C.甲不可以,乙可以D.甲、乙都不可以
2、(4分)如图,线段AB两个端点的坐标分别是A(6,4),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为( )
A.(3,2)B.(4,1)C.(3,1)D.(4,2)
3、(4分)如图,过点A0(1,0)作x轴的垂线,交直线l:y=2x于B1,在x轴上取点A1,使OA1=OB1,过点A1作x轴的垂线,交直线l于B2,在x轴上取点A2,使OA2=OB2,过点A2作x轴的垂线,交直线l于B3,…,这样依次作图,则点B8的纵坐标为( )
A.()7B.2()7C.2()8D.()9
4、(4分)用反证法证明“若 a⊥c,b⊥c,则 a∥b”时,应假设( )
A.a 不垂直于 cB.a垂直于bC.a、b 都不垂直于 cD.a 与 b 相交
5、(4分)将抛物线y=﹣3x2+1向左平移2个单位长度,再向下平移3个单位长度,所得到的抛物线为( )
A.y=﹣3(x﹣2)2+4B.y=﹣3(x﹣2)2﹣2
C.y=﹣3(x+2)2+4D.y=﹣3(x+2)2﹣2
6、(4分) “绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是( )
A.B.
C.D.
7、(4分)下列各等式成立的是( )
A.B.
C.D.
8、(4分)如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为( )
A.10cmB.15cmC.10cmD.20cm
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,矩形ABCD的对角线AC与BD相交点O,AC=10,P、Q分别为AO、AD的中点,则PQ的的长度为________.
10、(4分)在方程组中,已知,,则a的取值范围是______.
11、(4分)已知一次函数,当时,对应的函数的取值范围是,的值为__.
12、(4分)如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH=_____.
13、(4分)斜边长17cm,一条直角边长15cm的直角三角形的面积 .
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,某校组织学生到地开展社会实践活动,乘车到达地后,发现地恰好在地的正北方向,导航显示车辆应沿北偏东方向行驶10公里到达地,再沿北偏西方向行驶一段距离才能到达地.求、两地间的距离,
15、(8分)如图,在平面直角坐标系xOy中,一次函数的图象与正比例函数的图象交于点A(2,m),一次函数的图象分别与x轴、y轴交于B、C两点.
(1)求m、k的值;
(2)求∠ACO的度数和线段AB的长.
16、(8分)如图,在平面直角坐标系xy中,矩形OABC的顶点B坐标为(12,5),点D在 CB边上从点C运动到点B,以AD为边作正方形ADEF,连BE、BF,在点D运动过程中,请探究以下问题:
(1)△ABF的面积是否改变,如果不变,求出该定值;如果改变,请说明理由;
(2)若△BEF为等腰三角形,求此时正方形ADEF的边长;
(3)设E(x,y),直接写出y关于x的函数关系式及自变量x的取值范围.
17、(10分) (1)解方程:﹣=1
(2)先化简,再求值:÷(﹣x﹣2),其中x=﹣2
18、(10分)已知:,求的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,O是矩形ABCD对角线AC的中点,M是AD的中点,若BC=8,OB=5,则OM的长为_____
20、(4分)二次函数y=ax2+bx+c的函数值y自变量x之间的部分对应值如表:此函数图象的对称轴为_____ .
21、(4分)如图,在正方形中,是边上的点,过点作于,若,则的度数为______.
22、(4分)有7个数由小到大依次排列,其平均数是38,如果这组数的前4个数的平均数是33,后4个数的平均数是42,则这7个数的中位数是 .
23、(4分)已知关于x的不等式组的整数解共有5个,则a的取值范围是_________
二、解答题(本大题共3个小题,共30分)
24、(8分)把一个足球垂直地面向上踢,(秒)后该足球的高度(米)适用公式.
(1)经多少秒时足球的高度为20米?
(2)小明同学说:“足球高度不可能达到21米!”你认为他说得对吗?请说明理由.
25、(10分)(1)因式分解:x2y﹣2xy2+y3
(2)解不等式组:
26、(12分)已知△ABC中, ∠ACB=90°,∠CAB=30°,以AC,AB为边向外作等边三角形ACD和等边三角形ABE,点F在AB上,且到AE,BE的距离相等.
(1)用尺规作出点F; (要求:尺规作图,保留作图痕迹,不写作法)
(2)连接EF,DF,证明四边形ADFE为平行四边形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
直接利用图形的剪拼方法结合正方形的性质分别分析得出答案.
【详解】
解:如图所示:
可得甲、乙都可以拼一个面积是5的大正方形.
故选:.
此题主要考查了图形的剪拼以及正方形的性质,正确应用正方形的性质是解题关键.
2、A
【解析】
试题分析:∵线段AB的两个端点坐标分别为A(6,4),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的一半,∴端点C的坐标为:(3,2).故选A.
考点:1.位似变换;2.坐标与图形性质.
3、B
【解析】
根据一次函数图象上点的坐标特征和等腰三角形的性质即可得到结论.
【详解】
解:∵A0(1,0),
∴OA0=1,
∴点B1的横坐标为1,
∵B1,B2、B3、…、B8在直线y=2x的图象上,
∴B1纵坐标为2,
∴OA1=OB1=,
∴A1(,0),
∴B2点的纵坐标为,
于是得到B3的纵坐标为2…
∴B8的纵坐标为2
故选:B.
本题考查了一次函数图象上点的坐标特征、等腰直角三角形的性质,解题的关键是找出Bn的坐标的变化规律.
4、D
【解析】
反证法的步骤中,第一步是假设结论不成立,反面成立,即可解答.
【详解】
解:用反证法证明“在同一平面内,若a⊥c,b⊥c,则a∥b”,
应假设:a不平行b或a与b相交.
故选择:D.
本题考查了反证法,解此题关键要懂得反证法的意义及步骤.
反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
5、D
【解析】
根据“左加右减、上加下减”的原则进行解答即可.
【详解】
将抛物线y=﹣3x1+1向左平移1个单位长度所得直线解析式为:y=﹣3(x+1)1+1;
再向下平移3个单位为:y=﹣3(x+1)1+1﹣3,即y=﹣3(x+1)1﹣1.
故选D.
此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.
6、C
【解析】
分析:设实际工作时每天绿化的面积为x万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x的分式方程.
详解:设实际工作时每天绿化的面积为x万平方米,则原来每天绿化的面积为万平方米,
依题意得:,即.
故选C.
点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.
7、C
【解析】
根据分式的基本性质逐一进行判断即可得答案.
【详解】
A、,故此选项不成立;
B、==a+b,故此选项不成立;
C、==a+1,故此选项成立;
D、==﹣,故此选项不成立;
故选:C.
本题考查了分式的基本性质,分式的分子和分母同时乘以或除以同一个不为0的整式,分式的值不变;熟练掌握分式的基本性质是解题关键.
8、D
【解析】
根据等腰三角形的性质得到OE的长,再利用弧长公式计算出弧CD的长;设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,可求出r;接下来根据圆锥的母线长、底面圆的半径以及圆锥的高构成直角三角形,利用勾股定理可计算出圆锥的高.
【详解】
过O作OE⊥AB于E,如图所示.
∵OA=OB=60cm,∠AOB=120°,
∴∠A=∠B=30°,
∴OE= OA=30cm,
∴弧CD的长==20π,
设圆锥的底面圆的半径为r,则2πr=20π,
解得r=10,
∴由勾股定理可得圆锥的高为:cm.
故选D.
本题考查了勾股定理,扇形的弧长公式,圆锥的计算,圆锥的侧面展开图为扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2.1
【解析】
分析:根据矩形的性质可得AC=BD=10,BO=DO=BD=1,再根据三角形中位线定理可得PQ=DO=2.1.
详解:∵四边形ABCD是矩形,
∴AC=BD=10,BO=DO=BD,
∴OD=BD=1,
∵点P、Q是AO,AD的中点,
∴PQ是△AOD的中位线,
∴PQ=DO=2.1.
故答案为2.1.
点睛:此题主要考查了矩形的性质,以及三角形中位线定理,关键是掌握矩形对角线相等且互相平分.
10、
【解析】
先根据加减消元法解二元一次方程组,解得,再根据,,可列不等式组,解不等式组即可求解.
【详解】
方程组,
由①+②,可得:
,
解得,
把代入①可得:,
因为,,
所以,
所以不等式组的解集是,
故答案为:.
本题主要考查解含参数的二元一次方程组和一元一次不等式组,解决本题的关键是要熟练掌握解含参数的二元一次方程的解法.
11、4.
【解析】
根据题意判断函数是减函数,再利用特殊点代入解答即可.
【详解】
当时,随的增大而减小,即一次函数为减函数,
当时,,当时,,
代入一次函数解析式得:,
解得,
故答案为:4.
本题考查求一次函数的解析式,掌握求解析式的待定系数法是解题关键.
12、
【解析】
试题分析:根据菱形的对角线互相垂直平分求出OA=4、OB=3,再利用勾股定理列式求出AB=5,然后根据△AOB的面积列式得,解得OH=.
故答案为.
点睛:此题主要考查了菱形的性质,解题时根据菱形的对角线互相垂直平分求出OA、OB,再利用勾股定理列式求出AB,然后根据△AOB的面积列式计算即可得解.
13、60cm2
【解析】
试题分析:先根据勾股定理求得另一条直角边的长,再根据直角三角形的面积公式即可求得结果.
由题意得,另一条直角边的长
则直角三角形的面积
考点:本题考查的是勾股定理,直角三角形的面积公式
点评:本题属于基础应用题,只需学生熟练掌握勾股定理和直角三角形的面积公式,即可完成.
三、解答题(本大题共5个小题,共48分)
14、公里
【解析】
先过点C向AB作垂线,构造直角三角形,利用60°和45°特殊角,表示出相关线段,利用已知CB长度为10公里,建立方程,解出这些相关线段,从而求得A、C两地的距离.
【详解】
解:如图,过点作于点,
则,,,
在中,
,
,
,
,
由勾股定理可得:,
在中,
,
、两地间的距离为公里.
本题主要考查了勾股定理应用题,正确构造直角三角形,然后利用特殊角表示相关线段,从而求解是解题关键.
15、(1)m=4,k=2;(2)∠ACO=45°,AB.
【解析】
(1)将点A(2,m)代入y=-x+6可得m的值,再将所得点A坐标代入y=kx可得k;
(2)先求得点B、C的坐标,从而得出△OBC是等腰直角三角形,据此知∠ACO=45°,根据勾股定理可得AB的长.
【详解】
解:(1)把A(2,m)代入y=-x+6得:m=-2+6=4,
把A(2,4)代入y=kx得4=2k,解得k=2;
(2)由y=-x+6可得B(6,0)、C(0,6),
∴OB=OC=6,
∴△OBC是等腰直角三角形,
∴∠ACO=45°.
设AD⊥x轴于点D,AE⊥y轴于点E,
则AD=4,BD=OB-OD=6-2=4,
在Rt△ABD中,
AB=.
本题主要考查了待定系数法求函数解析式,等腰三角形的判定与性质、勾股定理等知识,掌握基本定理是解题的关键.
16、(1)不变,,理由见解析;(2)5或或;(3)y=-x+22(5x17)
【解析】
(1)由“SAS”可证△ABD≌△FHA,可得HF=AB=5,即可求△ABF的面积;
(2)分三种情况讨论,由等腰三角形的性质和勾股定理可求正方形ADEF的边长;
(3)由全等三角形的性质,DH=AB=5,EH=DB,可得y=EH+5=DB+5,x=12-DB+DH=17-DB,即可求y关于x的函数关系式.
【详解】
解:(1)作FH⊥AB交AB延长线于H,
∵正方形ADEF中,AD=AF,∠DAF=90°,
∴∠DAH+∠FAH=90°.
∵∠H=90°,
∴∠FAH+∠AFH=90°,
∴∠DAH=∠AFH,
∵矩形OABC中,AB=5,∠ABD=90°,
∴∠ABD=∠H∴△ABD≌△FHA,
∴FH=AB=5,
∴;
(2)①当EB=EF时,作EG⊥CB
∵正方形ADEF中,ED=EF,
∴ED=EB ,
∴DB=2DG,
同(1)理得△ABD≌△GDE,
∴DG=AB=5 , ∴ DB=10,
∴;
②当EB=BF时,∠BEF=∠BFE,
∵正方形ADEF中,ED=AF,∠DEF=∠AFE=90°,
∴∠BED=∠BFA,
∴△ABF≌△DBE,
∴BD=AB=5 ,
∵矩形OABC中,∠ABD=90°,
∴ ;
③当FB=FE时,作FQ⊥AB,
同理得BQ=AQ=, BD=AQ=,
∴;
(3)当5≤x≤12时,如图,
由(2)可知DH=AB=5,EH=DB,且E(x,y),
∴y=EH+5=DB+5,x=12-DB+DH=17-DB,
∴y=22-x,
当12<x≤17时,如图,
同理可得:x=12-DB+5=17-DB,y=DB+5,
∴y=22-x,
综上所述:当5≤x≤17时,y=22-xy=-x+22(5x17).
本题是四边形综合题,考查了正方形的性质,矩形的性质,全等三角形的判定和性质,勾股定理,等腰三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.
17、 (1)x=2;(2);-2.
【解析】
(1)根据分式方程的解法即可求出答案.
(2)根据分式的运算法则即可求出答案.
【详解】
(1)x(x+1)﹣3(x﹣1)=(x﹣1)(x+1)
x2+x﹣3x+3=x2﹣1
x=2
经检验:x=2是原方程的根
(2)当x=﹣2时,
原式=÷
=﹣×
=
=﹣
=﹣2.
本题考查学生的运算,解题的关键是熟练运用运算法则,本题属于基础题型.
18、,
【解析】
解:==
又∵x+y=2,x-y=2
∴原式==
一、填空题(本大题共5个小题,每小题4分,共20分)
19、3.
【解析】
由直角三角形的性质得到AC=2OB=10,利用勾股定理求出AB=CD=6,再根据三角形的中位线得到OM的长度.
【详解】
∵四边形ABCD是矩形,
∴∠ABC=∠D=90,AB=CD,
∵O是矩形ABCD对角线AC的中点,OB=5,
∴AC=2OB=10,
∴CD= ,
∵O是 AC的中点,M是AD的中点,
∴OM是△ACD的中位线,
∴OM= CD=3,
故填:3.
此题考查矩形的性质,矩形的一条对角线将矩形分为两个全等的直角三角形,根据直角三角形斜边中线等于斜边的一半求得AC,根据勾股定理求出CD,在利用三角形的中位线求出OM.
20、直线x=1
【解析】
根据抛物线的对称性,x=0、x=4时的函数值相等,然后列式计算即可得解.
【详解】
解:∵x=0、x=4时的函数值都是−1,
∴此函数图象的对称轴为直线x==1,即直线x=1.
故答案为:直线x=1.
本题考查了二次函数的性质,主要利用了二次函数图象的对称性.
21、
【解析】
由正方形的性质得到∠BDC=∠CBD=45°,求得DF=EF,∠FED=45°.根据等腰三角形的性质得到∠EFC=∠ECF,于是得到结论.
【详解】
解:∵四边形ABCD是正方形,
∴∠BDC=∠CBD=45°,
∵EF⊥BD,
∴△DFE是等腰直角三角形,
∴DF=EF,∠FED=45°,
∵EF=EC,
∴∠EFC=∠ECF,
∵∠FED=∠EFC+∠ECF,
∴∠ECF=22.5°,
∵∠BCD=90°,
∴∠BCF=67.5°,
故答案为:67.5°.
本题考查了正方形的性质,等腰直角三角形的判定和性质,等腰三角形的性质,正确的识别图形是解题的关键.
22、34
【解析】
试题解析:解:设这7个数的中位数是x,
根据题意可得:,
解方程可得:x=34.
考点:中位数、平均数
点评:本题主要考查了平均数和中位数.把一组数据按照从小到大的顺序或从大到小的顺序排列,最中间的一个或两个数的平均数叫做这组数据的中位数.
23、-3
相关试卷
这是一份2025届重庆市北碚区西南大附中九上数学开学复习检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届重庆市巴川中学九上数学开学教学质量检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年重庆市大渡口区九上数学开学复习检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。