|试卷下载
终身会员
搜索
    上传资料 赚现金
    2025届重庆市沙坪坝区第四共同体数学九年级第一学期开学质量检测模拟试题【含答案】
    立即下载
    加入资料篮
    2025届重庆市沙坪坝区第四共同体数学九年级第一学期开学质量检测模拟试题【含答案】01
    2025届重庆市沙坪坝区第四共同体数学九年级第一学期开学质量检测模拟试题【含答案】02
    2025届重庆市沙坪坝区第四共同体数学九年级第一学期开学质量检测模拟试题【含答案】03
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届重庆市沙坪坝区第四共同体数学九年级第一学期开学质量检测模拟试题【含答案】

    展开
    这是一份2025届重庆市沙坪坝区第四共同体数学九年级第一学期开学质量检测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为( )
    A.2%B.4.4%C.20%D.44%
    2、(4分)一个大矩形按如图方式分割成6个小矩形,且只有标号为②,④的两个小矩形为正方形,若要求出△ABC的面积,则需要知道下列哪个条件? ( )
    A.⑥的面积B.③的面积C.⑤的面积D.⑤的周长
    3、(4分)如图,在 ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有( ).
    A.1个B.2个C.3个D.4个
    4、(4分)一个正多边形的内角和为,则这个正多边形的每一个外角的度数是( )
    A.B.C.D.
    5、(4分)甲,乙,丙,丁四人进行射击测试,记录每人10次射击成情,得到各人的射击成绩方差如表中所示,则成绩最稳定的是( )
    A.甲B.乙C.丙D.丁
    6、(4分)如图,点,,,在一次函数的图象上,它们的横坐标分别是-1,0,3,7,分别过这些点作轴、轴的垂线,得到三个矩形,那么这三个矩形的周长和为( )
    A.B.52C.48D.
    7、(4分)下列x的值中,是不等式x+1>5的解的是( )
    A.﹣2B.0C.4D.6
    8、(4分)如图,在平面直角坐标系中,点、的坐标分别是.,点在直线上,将沿射线方向平移后得到.若点的横坐标为,则点的坐标为( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,等腰△ABC中,AB=AC,AB的垂直平分线MN交边AC于点D,且∠DBC=15°,则∠A的度数是_______.
    10、(4分)若菱形的两条对角线长分别是6㎝和8㎝,则该菱形的面积是 ㎝1.
    11、(4分)计算:﹣=__.
    12、(4分)已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所能取到的整数值为________.
    13、(4分)已知一组数据 a,b,c,d的方差是4,那么数据,,, 的方差是________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知反比例函数y=的图象经过点(-1,-2).
    (1)求y与x的函数关系式;
    (2)若点(2,n)在这个图象上,求n的值.
    15、(8分)如图1在正方形中,是的中点,点从点出发沿的路线移动到点时停止,出发时以单位/秒匀速运动:同时点从出发沿的路线匀速运动,移动到点时停止,出发时以单位/秒运动,两点相遇后点运动速度变为单位/秒运动,点运动速度变为单位/秒运动:图2是射线随点运动在正方形中扫过的图形的面积与时间的函数图象,图3是射线随点运动在正方形中扫过的图形的面积与时间的图数图象,
    (1)正方形的边长是______.
    (2)求,相遇后在正方形中所夹图形面积与时间的函数关系式.
    16、(8分)如图,分别表示甲步行与乙骑自行车(在同一条路上)行走的路程、与时间的关系,观察图象并回答下列问题:
    (1)乙出发时,乙与甲相距 千米;
    (2)走了一段路程后,乙有事耽搁,停下来时间为 小时;
    (3)甲从出发起,经过 小时与乙相遇;
    (4)甲行走的平均速度是多少千米小时?
    17、(10分)如图所示,在直角坐标系 xOy 中,一次函数=x+b(≠0)的图象与反比例函数 的图象交于A(1,4),B(2,m)两点.
    (1)试确定上述反比例函数和一次函数的表达式;
    (2)求△AOB 的面积;
    (3)当 x 的取值范围是 时,x+b>(直接将结果填在横线上)
    18、(10分)如图,直线y=x﹣3交x轴于A,交y轴于B,
    (1)求A,B的坐标和AB的长(直接写出答案);
    (2)点C是y轴上一点,若AC=BC,求点C的坐标;
    (3)点D是x轴上一点,∠BAO=2∠DBO,求点D的坐标.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,菱形中,,点是直线上的一点.已知的面积为6,则线段的长是_____.
    20、(4分)若直线y=ax+7经过一次函数y=4﹣3x和y=2x﹣1的交点,则a的值是_____.
    21、(4分)用反证法证明命题“三角形中至少有两个锐角”,第一步应假设_____.
    22、(4分)如图,中,是的中点,平分,于点,若,,则的长度为_____.
    23、(4分)有一道题“先化简,再求值:,其中”.小玲做题时把“”错抄成“”,她的计算结果正确吗?______.(填正确或错误)
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,,是上的一点,且,.
    求证:≌
    25、(10分)如图,在等腰梯形ABCD中,,,,.点Р从点B出发沿折线段以每秒5个单位长的速度向点C匀速运动;点Q从点C出发沿线段CB方向以每秒3个单位长的速度匀速运动,过点O向上作射线OKIBC,交折线段于点E.点P、O同时开始运动,为点Р与点C重合时停止运动,点Q也随之停止.设点P、Q运动的时间是t秒.
    (1)点P到达终点C时,求t的值,并指出此时BQ的长;
    (2)当点Р运动到AD上时,t为何值能使?
    (3)t为何值时,四点P、Q、C、E成为一个平行四边形的顶点?
    (4)能为直角三角形时t的取值范围________.(直接写出结果)
    (注:备用图不够用可以另外画)

    26、(12分)电话计费问题,下表中有两种移动电话计费方式:
    温馨揭示:方式一:月使用费固定收(月收费:38元/月);主叫不超限定时间不再收费(80分钟以内,包括80分钟);主叫超时部分加收超时费(超过部分0.15元/);被叫免费。
    方式二:月使用费0元(无月租费);主叫限定时间0分钟;主叫每分钟0.35元/;被叫免费。
    (1)设一个月内用移动电话主叫时间为,方式一计费元,方式二计费元。写出和关于的函数关系式。
    (2)在平面直角坐标系中画出(1)中的两个函数图象,记两函数图象交点为点,则点的坐标为_____________________(直接写出坐标,并在图中标出点)。
    (3)根据(2)中函数图象,请直接写出如何根据每月主叫时间选择省钱的计费方式。
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    分析:设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,根据2017年及2019年“竹文化”旅游收入总额,即可得出关于x的一元二次方程,解之取其正值即可得出结论.
    详解:设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,
    根据题意得:2(1+x)2=2.88,
    解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).
    答:该市2018年、2019年“竹文化”旅游收入的年平均增长率约为20%.
    故选C.
    点睛:本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
    2、A
    【解析】
    根据列式化简计算,即可得△ABC的面积等于⑥的面积.
    【详解】
    设矩形的各边长分别为a, b,x如图,则
    ∵=(a+b+x)(a+b)-a²-ab-b(b+x)= (a²+2ab+b²+ax+bx)-a²-ab-b²-bx
    =ax
    ∴只要知道⑥的面积即可.故选A.
    本题考查了推论与论证的知识,根据题意结合正方形的性质得出只有表示出矩形的各边长才可以求出面积,这也是解答本题的关键.
    3、D
    【解析】
    分析:如图延长EF交BC的延长线于G,取AB的中点H连接FH.证明△DFE≌△FCG 得EF=FG,BE⊥BG,四边形BCFH是菱形即可解决问题;
    详解:如图延长EF交BC的延长线于G,取AB的中点H连接FH.
    ∵CD=2AD,DF=FC,
    ∴CF=CB,
    ∴∠CFB=∠CBF,
    ∵CD∥AB,
    ∴∠CFB=∠FBH,
    ∴∠CBF=∠FBH,
    ∴∠ABC=2∠ABF.故①正确,
    ∵DE∥CG,
    ∴∠D=∠FCG,
    ∵DF=FC,∠DFE=∠CFG,
    ∴△DFE≌△FCG,
    ∴FE=FG,
    ∵BE⊥AD,
    ∴∠AEB=90°,
    ∵AD∥BC,
    ∴∠AEB=∠EBG=90°,
    ∴BF=EF=FG,故②正确,
    ∵S△DFE=S△CFG,
    ∴S四边形DEBC=S△EBG=2S△BEF,故③正确,
    ∵AH=HB,DF=CF,AB=CD,
    ∴CF=BH,∵CF∥BH,
    ∴四边形BCFH是平行四边形,
    ∵CF=BC,
    ∴四边形BCFH是菱形,
    ∴∠BFC=∠BFH,
    ∵FE=FB,FH∥AD,BE⊥AD,
    ∴FH⊥BE,
    ∴∠BFH=∠EFH=∠DEF,
    ∴∠EFC=3∠DEF,故④正确,
    故选D.
    点睛:本题考查平行四边形的性质和判定、菱形的判定和性质、直角三角形斜边中线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.
    4、A
    【解析】
    根据多边形的内角和公式求出边数,从而求得每一个外角的度数.
    【详解】
    多边形的内角和为,即
    解得:
    ∴该多边形为正八边形
    ∴正八边形的每一个外角为:
    故选:A
    本题考查了多边形的内角和与外角和公式,解题的关键在于根据内角和求出具体的边数.
    5、D
    【解析】
    根据方差的性质即可判断.
    【详解】
    ∵丁的方差最小,故最稳定,
    选D.
    此题主要考查方差的应用,解题的关键是熟知方差的性质.
    6、C
    【解析】
    根据一次函数的图像与直角坐标系坐标特点即可求解.
    【详解】
    由题意可得,.
    ∴.
    故选C.
    此题主要考查一次函数的图像,解题的关键是熟知直角坐标系的特点.
    7、D
    【解析】
    根据不等式解集的定义即可得出结论.
    【详解】
    ∵不等式x+1>5的解集是所有大于4的数,
    ∴6是不等式的解.
    故选D.
    本题考查的是不等式的解集,熟知使不等式成立的未知数的值叫做不等式的解是解答此题的关键.
    8、C
    【解析】
    由点的横坐标为及点在直线上,可得点(2,4)得出图形平移规律进行计算即可.
    【详解】
    解:由点的横坐标为及点在直线上
    当x=2时,y=4
    ∴(2,4)
    ∴该图形平移规律为沿着x轴向右平移两个单位,沿着y轴向上平移4个单位
    ∴ (6,4)
    故答案选: C
    本题考查了由函数图像推出点坐标,图形的平移规律,掌握图形的平移规律与点的平移规律是解决的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1.
    【解析】
    根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可.
    【详解】
    解:∵MN是AB的垂直平分线,
    ∴AD=BD,
    ∴∠A=∠ABD,
    ∵∠DBC=15°,
    ∴∠ABC=∠A+15°,
    ∵AB=AC,
    ∴∠C=∠ABC=∠A+15°,
    ∴∠A+∠A+15°+∠A+15°=180°,
    解得∠A=1°.
    故答案为1°
    10、14
    【解析】
    已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.
    解:根据对角线的长可以求得菱形的面积,
    根据S=ab=×6×8=14cm1,
    故答案为14.
    11、
    【解析】
    分析:先将二次根式化为最简,然后合并同类二次根式即可.
    详解:原式=3-2
    =.
    故答案为.
    点睛:本题考查了二次根式的加减运算,解答本题得关键是掌握二次根式的化简及同类二次根式的合并.
    12、-2
    【解析】
    试题分析:根据题意可得2k+3>2,k<2,解得﹣<k<2.因k为整数,所以k=﹣2.
    考点:一次函数图象与系数的关系.
    13、
    【解析】
    方差是用来衡量一组数据波动大小的量,每个数都加了2,所以波动不会变,方差不变.从而可得答案.
    【详解】
    解:设数据a、b、c、d的平均数为,
    数据都加上了2,则平均数为,



    故答案为1.
    本题考查了方差,说明了当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变.掌握以上知识是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)y=.(2)n=1.
    【解析】
    (1)直接把点(﹣1,﹣2)代入反比例函数y=即可得出结论.
    (2)把(2,n)代入强大的解析式即可求得.
    【详解】
    解:(1)∵反比例函数y=的图象经过(﹣1,﹣2),
    ∴﹣2=,解得k=2.
    ∴这个函数的解析式为y=.
    (2)把(2,n)代入y=得n==1.
    15、(1)6;(2)见详解.
    【解析】
    (1)从图3中可以看出射线OQ前面6秒扫过的面积为9,则可以得到×AD∙AD=9,从而解方程,求出正方形的边长.
    (2)仔细观察函数图象可知点P点Q是在点C处相遇,并由(1)中得到的正方形边长可求得,相遇前后P,Q的速度,再画出图形列出式子求解即可.
    【详解】
    解:(1)由图3可知△OCD的面积=9.
    ∵O是AD的中点,
    ∴OD=AD.
    ∵四边形ABCD是正方形,
    ∴AD=CD,∠ODC=90°,
    ∴AD∙AD=9
    解得:AD=6.
    故答案为6.
    (2)观察图2和图3可知P,Q两点是在点C处相遇,且相遇前P,Q的速度分别为2和1.相遇后P,Q的运动速度分别为1和3.
    ①当6t时,如图1,S=正方形的面积-△POD的面积-梯形OABQ的面积.
    ∵PC=t-6,CQ=3(t-6)=3t-18.
    ∴PD=12-t,BQ=24-3t.
    ∴S=36-(12-t)-3(3+24-3t)
    =36-18+t-81+9t
    =t-63.
    ②当8t10时,如图2,S=正方形的面积-△POD的面积-△AOQ的面积.
    ∵PC=t-6,BQ=3(t-8)=3t-24,
    ∴PD=12-t,AQ=30-3t.
    ∴S=36-(12-t)-(30-3t)
    =36-18+t-45+t.
    =6t-27.
    当10∵PC=t-6,
    ∴PD=12-t,
    ∴S=36-(12-t)
    =36-18+t
    =t+18.
    综上所述,,相遇后在正方形中所夹图形面积与时间的函数关系式为:
    当6t时S=t-63;当8t10时,S=6t-27;当10本题为一次函数综合运用题,涉及到图形的面积计算等,此类题目关键是,弄清楚不同时间段动点所在的位置,确定线段相应的长度,进而求解.
    16、(1)1;(2)1;(3)3;(4)
    【解析】
    利用一次函数和分段函数的性质,结合图象信息,一一解答即可.
    【详解】
    解:(1)由图象可知,乙出发时,乙与甲相距1千米.
    故答案为:1.
    (2))由图象可知,走了一段路程后,乙有事耽搁,停下来的时间为:1.5-0.5=1小时;
    故答案为:1.
    (3)由图象可知,甲从出发起,经过3小时与乙相遇.
    故答案为:3.
    (4)甲行走的平均速度是:(22.5-1)÷3=千米/小时.
    本题考查一次函数的应用、路程、速度、时间的关系等知识,解题的关键是灵活运用图中信息解决问题,所以中考常考题型.
    17、(1),;(1)3;(3)x<0或
    【解析】
    (1)把(1,4)代入y=,易求k1,从而可求反比例函数解析式,再把B点坐标代入反比例函数解析式,易求m,然后把A、B两点坐标代入一次函数解析式,易得关于k1、b的二元一次方程,解可求k1、b,从而可求一次函数解析式;
    (1)设直线AB与x轴交于点C,再根据一次函数解析式,可求C点坐标,再根据分割法可求△AOB的面积;
    (3)观察可知当x<0或1<x<3时,k1x+b>.
    【详解】
    解:(1)把(1,4)代入y=,得
    k1=4,
    ∴反比例函数的解析式是y=,
    当x=1时,y=,
    ∴m=1,
    把(1,4)、(1,1)代入y1=k1x+b中,得

    解得,
    ∴一次函数的解析式是y=-1x+6;
    (1)设直线AB与x轴交于点C,
    当y=0时,x=3,
    故C点坐标是(3,0),
    ∴S△AOB=S△AOC-S△BOC=×3×4-×3×1=6-3=3;
    (3)在第一象限,当1<x<1时,k1x+b>;
    还可观察可知,当x<0时,k1x+b>.
    ∴x<0或1<x<1.
    本题考查了待定系数法求函数解析式、一次函数与反比例函数的交点问题,解题的关键是先求出反比例函数,进而求B点坐标,然后求出一次函数的解析式.
    18、(1)点A为(4,0),点B为(0,-3),AB=5;(2)(0,);(3)点D坐标为(-1,0)或(1,0).
    【解析】
    (1)设x=0,y=0,可以求出A,B坐标;、
    (2)设OC=x,则BC=BO+OC=x+3,即AC=BC=x+3,由勾股定理得;
    (3),得,,.
    【详解】
    (1)点A为(4,0),点B为(0,-3),AB=5
    (2)设OC=x,则BC=BO+OC=x+3
    即AC=BC=x+3
    在Rt△AOC中,

    本题考核知识点:一次函数的应用. 解题关键点:此题比较综合,要注意掌握数形结合思想.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    作于,由菱形的性质得出,,由直角三角形的性质得出,由的面积,即,解得:即可.
    【详解】
    解:作于,如图所示:
    四边形是菱形,
    ,,


    的面积,
    即,
    解得:;
    故答案为:.
    本题考查了菱形的性质、三角形面积公式、含角的直角三角形的性质;熟练掌握菱形的性质,证出与的关系是解题的关键.
    20、-2
    【解析】
    根据题意,得4﹣3x=2x﹣1,解得x=1,∴y=1.
    把(1,1)代入y=ax+7,得a+7=1,解得a=﹣2.
    故答案为﹣2.
    21、同一三角形中最多有一个锐角 .
    【解析】
    熟记反证法的步骤,直接填空即可.
    【详解】
    用反证法证明同一三角形中至少有两个锐角时,第一步应假设同一三角形中最多有一个锐角,
    故答案为:同一三角形中最多有一个锐角.
    本题考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
    22、1.
    【解析】
    延长BD交AC于F,利用“角边角”证明△ADF和△ADB全等,根据全等三角形对应边相等可得AF=AB,BD=FD,再求出CF并判断出DE是△BCF的中位线,然后根据三角形的中位线平行于第三边并且等于第三边的一半可得.
    【详解】
    解:如图,延长BD交AB于F,
    ∵AD平分∠BAC,
    ∴∠BAD=∠FAD,
    ∵BD⊥AD,
    ∴∠ADB=∠ADF=90°,
    在△ADF和△ADB中
    ∴△ADF≌△ADB(ASA),
    ∴AF=AB,BD=FD,
    ∴CF=AC-AB=6-4=2cm,
    又∵点E为BC的中点,
    ∴DE是△BCF的中位线,
    .
    本题考查了三角形的中位线平行于第三边并且等于第三边的一半,全等三角形的判定与性质,熟记性质并作出辅助线构造成全等三角形是解题的关键.
    23、正确
    【解析】
    先去括号,再把除法变为乘法化简,化简后代入数值判断即可.
    【详解】
    解:,
    因为x=或x=时,x2的值均为3,所以原式的计算结果都为7,
    所以把“”错抄成“”,计算结果也是正确的,
    故答案为:正确.
    本题考查分式的化简求值,应将除法转化为乘法来做,并分解因式、约分,得到化简的目的.同时也考查了学生的计算能力.
    二、解答题(本大题共3个小题,共30分)
    24、证明见解析.
    【解析】
    此题比较简单,根据已知条件,利用直角三角形的HL可以证明题目结论.
    【详解】
    证明:∵∠1=∠2
    ∴DE=CE
    ∵∠A=∠B=90°
    ∴AE=BC
    ∴Rt△ADE≌Rt△BEC(HL)
    此题考查直角三角形全等的判定,解题关键在于掌握判定定理
    25、 (2) 秒,;(2)详见解析;(3);(4)或.
    【解析】
    (2)把BA,AD,DC它们的和求出来再除以速度每秒5个单位就可以求出t的值,然后也可以求出BQ的长;
    (2)如图2,若PQ∥DC,又AD∥BC,则四边形PQCD为平行四边形,从而PD=QC,用t分别表示QC,BA,AP,然后就可以得出关于t的方程,解方程就可以求出t;
    (3)分情况讨论,当P在BA上运动时,E在CD上运动.0≤t≤20,QC的长度≤30,PE的长度>AD=75,QC(4)①当点P在BA(包括点A)上,即0②当点P、E都在AD(不包括点A但包括点D)上,即2025×3-30=45,
    可知,点P在以QE=40为直径的圆的外部,故∠EPQ不会是直角.由∠PEQ<∠DEQ,可知∠PEQ一定是锐角.对于∠PQE,
    ∠PQE≤∠CQE,只有当点P与C重合,即t=35时,如图4,∠PQE=90°,△PQE为直角三角形.
    【详解】
    解:(2)t=(50+75+50)÷5=35(秒)时,点P到达终点C,
    此时,QC=35×3=205,
    ∴BQ的长为235−205=30.
    (2)如图2,若PQ∥DC,
    ∵AD∥BC,
    ∴四边形PQCD为平行四边形,
    ∴PD=QC,
    由QC=3t,BA+AP=5t
    得50+75−5t=3t,
    解得t=.
    ∴当t=时,PQ∥DC.
    (3)当P在BA上运动时,E在CD上运动.0⩽t⩽20,QC的长度⩽30,PE的长度>AD=75,QC当P点运动到AD上,E在AD上,且P在E的左侧时,P、Q、C. E为顶点的四边形是平行四边形,如图5,
    ∴PE=QC.
    如图2,作DH⊥BC于H,AG⊥BC于G,
    ∠AGB=∠DHC=90∘
    ∴四边形AGHD是矩形,
    ∴GH=AD=75.AG=DH.
    在△ABG和△DCH中,

    ∴△ABG≌△DCH,
    ∴BG=CH=(235−75)=30,
    ∴ED=3(t−20)
    ∵AP=5t−50,
    ∴PE=75−(5t−50)−3(t−20)=255−8t.
    ∵QC=3t,
    ∴255−8t=3t,
    t=.
    当P在E点的右侧且在AD上时,t⩽25,P、Q、C. E为直角梯形,
    当P在CD上,E在AD上QE与PC不平行,P、Q、C. E不可能为平行四边形,
    ∴t=;
    (4)①当点P在BA(包括点A)上,即0过点P作PG⊥BC于点G,则PG=PB⋅sinB=4t,
    又有QE=4t=PG,易得四边形PGQE为矩形,此时△PQE总能成为直角三角形。
    ②当点P、E都在AD(不包括点A但包括点D)上,即20由QK⊥BC和AD∥BC可知,此时,△PQE为直角三角形,但点P、E不能重合,
    即5t−50+3t−30≠75,解得t≠.③当点P在DC上(不包括点D但包括点C),
    即2525×3−30=45,可知,点P在以QE=40为直径的圆的外部,故∠EPQ不会是直角。由∠PEQ<∠DEQ,可知∠PEQ一定是锐角
    对于∠PQE,∠PQE⩽∠C, 只有当点P与C
    重合,即t=35时,如图4,∠PQE=90∘,△PQE为直角三角形。
    综上所述,当△PQE为直角三角形时,t的取值范围是0故答案为:0本题考查四边形综合题,熟练掌握四边形的基本性质及计算法则是解题关键.
    26、(1)当时,,当时,,;(2)点的坐标为,见解析;(3)当每月主叫时间小于130分钟时选择方式二省钱;当每月主叫时间等于130分钟时两种方式都一样;当每月主叫时间大于130分钟时选择方式一省钱.
    【解析】
    (1)根据题意即可写出两种资费的关系式;
    (2)根据列表、描点、连线即可画出函数图像,再求出交点坐标A;
    (3)根据函数图像的性质即可求解.
    【详解】
    解:(1)方式一:当时,,
    当时,;
    方式二:;
    或解:(1)方式一:
    化简,得;
    方式二:;
    (2)
    点的坐标为
    (3)由图象可得,
    当每月主叫时间小于130分钟时选择方式二省钱;
    当每月主叫时间等于130分钟时两种方式都一样;
    当每月主叫时间大于130分钟时选择方式一省钱。
    此题主要考查一次函数的应用,解题的关键是根据题意写出函数关系式.
    题号





    总分
    得分
    批阅人
    统计量




    方差
    0.60
    0.62
    0.50
    0.44
    相关试卷

    2024年重庆市渝中学区数学九年级第一学期开学质量检测模拟试题【含答案】: 这是一份2024年重庆市渝中学区数学九年级第一学期开学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年重庆市育才中学数学九年级第一学期开学质量检测模拟试题【含答案】: 这是一份2024-2025学年重庆市育才中学数学九年级第一学期开学质量检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年重庆市(六校联考)九年级数学第一学期开学质量检测模拟试题【含答案】: 这是一份2024-2025学年重庆市(六校联考)九年级数学第一学期开学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map