2024-2025学年重庆市渝中区名校数学九年级第一学期开学教学质量检测模拟试题【含答案】
展开这是一份2024-2025学年重庆市渝中区名校数学九年级第一学期开学教学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各组数分别为三角形的三边长:①2,3,4:②5,12,13:③;④m2﹣n2,m2+n2,2mm(m>n),其中是直角三角形的有( )
A.4个B.3个C.2个D.1个
2、(4分)下列图形中,既是中心对称,又是轴对称的是( )
A.B.C.D.
3、(4分)如图,已知四边形ABCD为菱形,AD=5cm,BD=6cm,则此菱形的面积为( )
A.12cm2B.24cm2C.48cm2D.96cm2
4、(4分)使分式有意义的x的取值范围是( )
A.x≥1B.x≤1C.x>1D.x≠1
5、(4分)平南县某小区5月份随机抽取了15户家庭,对其用电情况进行了统计,统计情况如下(单位:度):78,62,95,108,87,103,99,74,87,105,88,76,76,94,79.则用电量在71~80的家庭有( )
A.4户B.5户C.6户D.7户
6、(4分)某市要组织一次足球邀请赛,参赛的每两个队都要比赛一场,赛程计划安排3天,每天安排2场比赛,设比赛组织者应邀请x个队参赛,则x满足的关系式为( )
A.B.C.D.
7、(4分)在相同时刻,物高与影长成正比.如果高为1.5米的标杆影长为2.5米,那么此时高为18米的旗杆的影长为( )
A.20米B.30米C.16米D.15米
8、(4分)下列属于矩形具有而菱形不具有的性质是( )
A.两组对边分别平行且相等
B.两组对角分别相等
C.对角线相互平分
D.四个角都相等
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,已知函数y=x+2b和y=ax+3的图象交于点P,则不等式x+2b>ax+3的解集为________ .
10、(4分)的平方根是____.
11、(4分)抛物线的顶点坐标是__________.
12、(4分)某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,则旅客可携带的免费行李的最大质量为kg
13、(4分)甲、乙两人进行跳高训练时,在相同条件下各跳5次的平均成绩相同.若=0.5,=0.4,则甲、乙两人的跳高成绩较为稳定的是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)在坐标系下画出函数的图象,
(1)正比例函数的图象与图象交于A,B两点,A在B的左侧,画出的图象并求A,B两点坐标
(2)根据图象直接写出时自变量x的取值范围
(3)与x轴交点为C,求的面积
15、(8分)先化简,再求值:,其中a=+1.
16、(8分)如图,矩形ABCD中,点E在BC上,AE=CE,试分别在下列两个图中按要求使用无刻度的直尺画图.
(1)在图1中,画出∠DAE的平分线;
(2)在图2中,画出∠AEC的平分线.
17、(10分)(1)探究新知:如图1,已知与的面积相等,试判断与的位置关系,并说明理由.
(2)结论应用:
①如图2,点,在反比例函数的图像上,过点作轴,过点作轴,垂足分别为,,连接.试证明:.
②若①中的其他条件不变,只改变点,的位置如图3所示,请画出图形,判断与的位置关系并说明理由.
18、(10分)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民户一表生活用水阶梯式计费价格表的部分信息:
说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费.
(1)设小王家一个月的用水量为吨,所应交的水费为元,请写出与的函数关系式;
(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把7月份的水费控制在不超过家庭月收入的.若小王家的月收入为元,则小王家7月份最多能用多少吨水?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,函数y=3x和y=ax+4的图象相交于点A(1,3),则不等式3x
21、(4分)计算=__________.
22、(4分)如图,在▱ABCD中(AD>AB),用尺规作图作射线BP交AD于点E,若∠D=50°,则∠AEB=___度.
23、(4分)若x是的整数部分,则的值是 .
二、解答题(本大题共3个小题,共30分)
24、(8分)随着改革开放进程的推进,改变的不仅仅是人们的购物模式,就连支付方式也在时代的浪潮中发生着天翻地覆的改变,除了现金、银行卡支付以外,还有微信、支付宝以及其他支付方式.在一次购物中,小明和小亮都想从微信、支付宝、银行卡三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.
25、(10分)如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与轴交于点.
(1)求该抛物线的解析式;
(2)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求点P的坐标;
(3)作直线BC,若点Q是直线BC下方抛物线上的一动点,三角形QBC面积是否有最大值,若有,请求出此时Q点的坐标;若没有,请说明理由.
26、(12分)已知四边形ABCD,请你作出一个新图形,使新图形与四边形ABCD的相似比为2:1,用圆规、直尺作图,不写作法,但要保留作图痕迹.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
先分别求出两个小数的平方和,再求出大数的平方,看看是否相等即可.
【详解】
解:∵22+32≠42,∴此时三角形不是直角三角形,故①错误;
∵52+122=132,∴此时三角形是直角三角形,故②正确;
∵∴此时三角形是直角三角形,故③正确;
∵(m2﹣n2)2+(2mn)2=(m2+n2)2,∴此时三角形是直角三角形,故④正确;
即正确的有3个,
故选:B.
本题考查了勾股定理的逆定理,能熟记勾股定理的逆定理的内容是解此题的关键.
2、C
【解析】
根据中心对称图形,轴对称图形的定义进行判断.
【详解】
A、是中心对称图形,不是轴对称图形,故本选项错误;
B、不是中心对称图形,也不是轴对称图形,故本选项错误;
C、既是中心对称图形,又是轴对称图形,故本选项正确;
D、不是中心对称图形,是轴对称图形,故本选项错误.
故选C.
本题考查了中心对称图形,轴对称图形的判断.关键是根据图形自身的对称性进行判断.
3、B
【解析】
设AC交BD于O.根据勾股定理求出OA,再根据菱形的面积公式计算即可.
【详解】
设AC交BD于O.
∵四边形ABCD是菱形,
∴AC⊥BD,
∵AD=5cm,OD=OB=BD=3cm,
∴OA==4,
∴AC=2OA=8,
∴S菱形ABCD=×AC×BD=24,
故选B.
本题考查菱形的性质、勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
4、D
【解析】
要使分式有意义,则必须分母不等于0.
【详解】
使分式有意义,则x-1≠0,所以x≠1.
故选D
本题考核知识点:分式有意义的条件. 解题关键点:记住要使分式有意义,则必须分母不等于0.
5、B
【解析】
根据题意找出用电量在71~80的家庭即可.
【详解】
解:用电量在71~80的家庭有:78,74,76,76,79共5户.
故选:B.
本题主要考查了数据的收集与整理,理清题意是解题的关键.
6、B
【解析】
每个队要比(x-1)场,根据题意可以列出相应的一元二次方程,本题得以解决.
【详解】
解:由题意可得,
x(x−1)=3×2,
即x(x−1)=6,
故选:B.
本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的一元二次方程,这是一道典型的单循环问题.
7、B
【解析】
设此时高为18米的旗杆的影长为xm,利用“在同一时刻物高与影长的比相等”列出比例式,进而即可求解.
【详解】
设此时高为18米的旗杆的影长为xm,
根据题意得:=,
解得:x=30,
∴此时高为18米的旗杆的影长为30m.
故选:B.
本题考查了相似三角形的应用,掌握相似三角形的性质和“在同一时刻物高与影长的比相等”的原理,是解题的关键.
8、D
【解析】
矩形具有的性质:①对角线互相平分,②四个角相等;
菱形具有的性质:①对角线互相平分,②对角线互相垂直,②四条边相等;
因此矩形具有而菱形不具有的性质是:四个角相等.
【详解】
.解:A、矩形和菱形的两组对边分别平行且相等,本选项不符合题意;
B、矩形和菱形的两组对角分别相等,本选项不符合题意;
C、矩形和菱形的对角线相互平分,本选项不符合题意;
D、菱形的四条角不相等,本选项符合题意;
故选:D.
本题考查了矩形和菱形的性质,做好本题的关键是熟练掌握性质即可.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x>1
【解析】
解:由图象可知:当x>1时,.故答案为:x>1.
10、±3
【解析】
∵=9,
∴9的平方根是.
故答案为3.
11、
【解析】
根据顶点式函数表达式即可写出.
【详解】
抛物线的顶点坐标是
故填
此题主要考查二次函数的顶点坐标,解题的关键是熟知二次函数的解析式特点.
12、20
【解析】
设函数表达式为y=kx+b把(30,300)、(50、900)代入可得:y=30x-600当y=0时x=20所以免费行李的最大质量为20kg
13、乙
【解析】
根据在平均成绩相同的情况下,方差越小,成绩越稳定即可得出结论.
【详解】
解:∵0.5>0.4
∴S甲2>S乙2,则成绩较稳定的同学是乙.
故答案为:乙.
此题考查的是利用方差做决策,掌握方差越小,数据越稳定是解决此题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)图象详见解析,A(,),B(8,4);(2)x≤或x>8;(3).
【解析】
(1)用描点法画出和的图象,再解方程组求得点A、B的坐标即可;(2)观察图象,结合点A、B的坐标即可求解;(3)先求得点C的坐标,再利用S△ABC=S△OBC﹣S△OAC即可求得△ABC的面积.
【详解】
(1)画出函数y1=|x﹣4|的图象如图:
∵y=|x﹣4|
∴,
解得,
∴A(,),
解得,
∴B(8,4);
(2)y2≤y1时自变量x的取值范围是:x≤或x≥8;
(3)令y=0则0=|x﹣4|,
解得x=4,
∴C(0,4),
∴S△ABC=S△OBC﹣S△OAC=×4×4﹣=.
本题考查了函数图象的画法及函数的交点坐标问题,正确求得两个函数的交点坐标是解决问题的关键.
15、
【解析】
原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.
【详解】
原式=
=,
当a=+1时,原式=.
此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
16、作图见解析
【解析】
试题分析:(1)连接AC,再由平行线的性质及等腰三角形的性质可知AC是∠DAE的平分线;
(2)连接AC,BD交于点F,连接EF,由平行线的性质及等腰三角形的性质可知AC是∠AEC的平分线.
试题解析:
(1)如图1所示.
;
(2)如图2所示.
.
考点:作图﹣基本作图
17、(1),理由见解析;(2)①见解析;②,理由见解析.
【解析】
(1)分别过点C,D,作CG⊥AB,DH⊥AB,垂足为G,H,则∠CGA=∠DHB=90°,根据△ABC与△ABD的面积相等,证明AB与CD的位置关系;
(2)连结MF,NE,设点M的坐标为(x1,y1),点N的坐标为(x2,y2),进一步证明S△EFM=S△EFN,结合(1)的结论即可得到MN∥EF;
(3)连接FM、EN、MN,结合(2)的结论证明出MN∥EF,GH∥MN,于是证明出EF∥GH.
【详解】
(1)如图1,分别过点、作、,垂足分别为、,
则,
∴,
∵且,
,
∴,
∴四边形为平行四边形,
∴;
(2)①如图2,连接,,
设点的坐标为,点的坐标为,
∵点,在反比例函数的图像上,
∴,.
∵轴,轴,且点,在第一象限,
∴,,,.
∴,,
∴,
从而,由(1)中的结论可知:;
②如图
,
理由:连接,,
设点的坐标为,点的坐标为,
由(2)①同理可得:
,,
∴,
从而,由(1)中的结论可知:.
本题主要考查反比例函数的综合题,解答本题的关键是根据同底等高的两个三角形面积相等进行解答问题,此题难度不是很大,但是三问之间都有一定的联系.
18、(1)y= ;(2)40吨.
【解析】
(1)由水费=自来水费+污水处理,分段得出y与x的函数关系式;
(2)先判断用水量超过30吨,继而再由水费不超过184,可得出不等式,解出即可.
【详解】
解:(1)设小王家一个月的用水量为x吨,所应交的水费为y元,则
①当用水量17吨及以下时,y=(2.2+0.8)x=3x;
②当17<x≤30时,y=17×2.2+4.2(x−17)+0.8x=5x−34;
③当x>30时,y=17×2.2+13×4.2+6(x−30)+0.8x=6.8x−1.
∴y= ;
(2)当用水量为30吨时,水费为:6.8×30−1=116元,9200×2%=184元,
∵116<184,
∴小王家七月份的用水量超过30吨,
设小王家7月份用水量为x吨,
由题意得:6.8x−1≤184,
解得:x≤40,
∴小王家七月份最多用水40吨.
本题考查了一次函数的应用及一元一次不等式的应用,解答本题的关键是仔细审题,将实际问题转化为数学模型求解.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
由题意结合图象可以知道,当x=1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式的解集.
【详解】
解:两个条直线的交点坐标为A(1,3),
当x<1时,
直线y=ax+4在直线y=3x的上方,
当x>1时,
直线y=ax+4在直线y=3x的下方,
故不等式3x
本题主要考查正比例函数、一次函数和一元一次不等式的知识点,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.
20、y=-x, 上, 4
【解析】
分析:根据函数图象平移的规则“上加下减”,即可得出将y=-x的函数图象向上平移4个单位即可得到函数y=-x+4的图象,此题得解.
详解:根据图形平移的规则“上加下减”,即可得出:
将y=−x的函数图象向上平移4个单位即可得到函数y=−x+4的图象.
故答案为:y=−x;上;4.
点睛:本题主要考查了一次函数图像与几何变换.关键在于牢记函数图像的平移规则.
21、
【解析】
分析:先把各根式化简,然后进行合并即可得到结果.
详解:原式=
=
点睛:本题主要考查二次根式的加减,比较简单.
22、1.
【解析】
由平行四边形的性质可知:AD∥BC,推出∠AEB=∠EBC,求出∠EBC即可;
【详解】
∵四边形ABCD是平行四边形,
∴∠ABC=∠D=50°,AD∥BC,
由作图可知,BE平分∠ABC,
∴∠EBC=∠ABC=1°,
∴∠AEB=∠EBC=1°,
故答案为1.
本题考查平行四边形的性质、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
23、1
【解析】
3<<4
x=3
==1
故答案为1.
二、解答题(本大题共3个小题,共30分)
24、.
【解析】
首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两人恰好选择同一种支付方式的情况,再利用概率公式即可求得答案.
【详解】
解:将微信记为A、支付宝记为B、银行卡记为C,
画树状图如下:
∵共有9种等可能的结果,其中两人恰好选择同一种支付方式的有3种,
∴两人恰好选择同一种支付方式的概率为.
此题考查列表法与画树状图法,解题关键在于画出树状图.
25、(1)y=x2-2x-2;(2)P点的坐标为( 0,)或( 0,);(2)点Q(, - ).
【解析】
(1)把A(﹣1,0),B(2,0)两点代入y=-x2+bx+c即可求出抛物线的解析式;
(2)由A(﹣1,0),B(2,0)可得AB=1,由△PAB是以AB为腰的等腰三角形,可分两种情况PA=AB=1时,PB=AB=1时,根据勾股定理分别求出OP的长即可求解;
(2)由抛物线得C(0,-2),求出直线BC的解析式,过点Q作QM∥y轴,交BC于点M,设Q(x,x2-2x-2),则M(x,x-2),根据三角形QBC面积S=QM∙OB得出二次函数解析式,根据二次函数的性质即可求出Q点坐标及△QBC面积的最大值
【详解】
解:(1)因为抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(2,0)两点,
所以可得解得.
所以该抛物线的解析式为:y=x2-2x-2;
(2)由A(﹣1,0),B(2,0)可得AB=1.
因为P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,可得PA=1或PB=1.
当PA=1时,因为A(﹣1,0),所以OP==,所以P( 0,);
当PB=1时,因为B(2,0),所以OP==,所以P( 0,);
所以P点的坐标为( 0,)或( 0,);
(2)对于y=x2-2x-2,当x=0时,y= -2,所以点C(0,-2)
设直线BC的解析式为:y=kx+b(k≠0),B(2,0),C(0,-2)
可得解得所以直线BC的解析式为:y=x-2.
过点Q作QM∥y轴,交BC于点M,设Q(x,x2-2x-2),则M(x,x-2).
所以三角形QBC的面积为S=QM∙OB=[( x-2)-(x2-2x-2)]×2
= -x2+x.
因为a=-<0,函数图象开口方向向下,所以函数有最大值,即三角形QBC面积有最大值.此时,x= -=,此时Q点的纵坐标为-,所以点Q(,-).
本题考查二次函数综合,用到的知识点是二次函数的图象与性质、三角形的面积、等腰三角形的判定、直线与抛物线的交点,关键是理解坐标与图形性质,会利用分类讨论的思想解决数学问题.
26、见解析.
【解析】
根据新图形与四边形ABCD的相似比为2:1,连接BD,延长BA、BD与BC在延长线上截取BA=AE,BD =DF,BC =CG,即可得出所画图形.
【详解】
解:如图所示.
连接BD,延长BA、BD与BC在延长线上截取BA=AE,BD =DF,BC =CG,连接EF,FG,四边形BEFG即所画图形.
本题考查相似变换的性质,根据相似比得出BE、BF、BG与BA、BD、BC的关系是解决问题的关键.
题号
一
二
三
四
五
总分
得分
自来水销售价格
污水处理价格
每户每月用水量
单价:元/吨
单价:元/吨
吨及以下
超过 17 吨但不超过 30 吨的部分
超过 30 吨的部分
相关试卷
这是一份2024-2025学年重庆市中学九上数学开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年重庆市育才中学数学九年级第一学期开学质量检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年重庆市南开(融侨)中学九上数学开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。