搜索
    上传资料 赚现金
    英语朗读宝

    2025届浙江省嘉兴市海宁新仓中学九上数学开学达标检测模拟试题【含答案】

    2025届浙江省嘉兴市海宁新仓中学九上数学开学达标检测模拟试题【含答案】第1页
    2025届浙江省嘉兴市海宁新仓中学九上数学开学达标检测模拟试题【含答案】第2页
    2025届浙江省嘉兴市海宁新仓中学九上数学开学达标检测模拟试题【含答案】第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届浙江省嘉兴市海宁新仓中学九上数学开学达标检测模拟试题【含答案】

    展开

    这是一份2025届浙江省嘉兴市海宁新仓中学九上数学开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)甲、乙是两个不透明的纸箱,甲中有三张标有数字,,的卡片,乙中有三张标有数字,,的卡片,卡片除所标数字外无其他差别,现制定一个游戏规则:从甲中任取一张卡片,将其数字记为,从乙中任取一张卡片,将其数字记为.若,能使关于的一元二次方程有两个不相等的实数根,则甲获胜;否则乙获胜.则乙获胜的概率为( )
    A.B.C.D.
    2、(4分)如图,在中,,、是斜边上两点,且,将绕顺时针旋转后,得到,连接,则下列结论不正确的是( )
    A.B.为等腰直角三角形
    C.平分D.
    3、(4分)小刚以400米/分的速度匀速骑车5分钟,在原地休息了6分钟,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是(横坐标表示小刚出发所用时间,纵坐标表示小刚离出发地的距离)( )
    A.B.
    C.D.
    4、(4分)如图,在中,于点D,且是的中点,若则的长等于( )
    A.5B.6C.7D.8
    5、(4分)下列各式中,是最简二次根式的是( )
    A.B.C.D.
    6、(4分)下列图形是中心对称图形的是( )
    A.B.C.D.
    7、(4分)如图,在正方形中,相交于点,分别为上的两点,,,分别交于两点,连,下列结论:①;②;③;④ ,其中正确的是( )
    A.①②B.①④C.①②④D.①②③④
    8、(4分)函数的图象如图所示,则关于的不等式的解集是( )
    A.B.
    C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在平面直角坐标系中,点,过点作的垂线交轴于点,过点作的垂线交轴于点,过点作的垂线交轴于点……按此规律继续作下去,直至得到点为止,则点的坐标为_________.
    10、(4分)现有甲、乙两支足球队,每支球队队员身高的平均数均为1.85米,方差分别为,,则身高较整齐的球队是__队
    11、(4分)如图,,,,,的长为________;
    12、(4分)若关于x的分式方程=+2有正整数解,则符合条件的非负整数a的值为_____.
    13、(4分)若有增根,则m=______
    三、解答题(本大题共5个小题,共48分)
    14、(12分)积极推行节能减排,倡导绿色出行,“共享单车”、共享助力车”先后上市,为人们出行提供了方便.某人去距离家千米的单位上班,骑“共享助力车”可以比骑“共享单车”少用分钟,已知他骑“共享助力车”的速度是骑“共享单车”的倍,求他骑“共享助力车”上班需多少分钟?
    15、(8分)如图,已知直线l1:y=-2x+4与x、y轴分别交于点N、C,与直线l2:y=kx+b(k≠0)交于点M,点M的横坐标为1,直线l2与x轴的交点为A(-2,0)
    (1)求k,b的值;
    (2)求四边形MNOB的面积.
    16、(8分)如图,矩形的对角线、交于点,,.
    证明:四边形为菱形;
    若,求四边形的周长.
    17、(10分)(1);
    (2);
    18、(10分)如图所示,点P的坐标为(1,3),把点P绕坐标原点O逆时针旋转90°后得到点Q.
    (1)写出点Q的坐标是________;
    (2)若把点Q向右平移个单位长度,向下平移个单位长度后,得到的点落在第四象限,求的取值范围;
    (3)在(2)条件下,当取何值,代数式取得最小值.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)分解因式:______________。
    20、(4分)八年级(4)班有男生24人,女生16人,从中任选1人恰是男生的事件是_______事件(填“必然”或“不可能”或“随机”).
    21、(4分)如图,在矩形ABCD中,AB=6,对角线AC、BD相交于点O,AE垂直平分BO于点E,则AD的长为_____.
    22、(4分)已知:在▱ABCD中,对角线AC、BD相交于点O,过点O的直线EF分别交AD于E、BC于F,S△AOE=3,S△BOF=5,则▱ABCD的面积是_____.
    23、(4分)已知一次函数经过,且与y轴交点的纵坐标为4,则它的解析式为______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在直角坐标系中,每个小方格都是边长为的正方形,的顶点均在格点上,点的坐标是.
    先将沿轴正方向向上平移个单位长度,再沿轴负方向向左平移个单位长度得到,画出,点坐标是________;
    将绕点逆时针旋转,得到,画出,并求出点的坐标是________;
    我们发现点、关于某点中心对称,对称中心的坐标是________.
    25、(10分)解不等式组:并在数轴上表示解集.
    26、(12分)已知与成正比例,且当时,,则当时,求的值.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    首先根据题意画出树状图,然后由树状图求得所有等可能的结果,利用一元二次方程根的判别式,即可判定各种情况下根的情况,然后利用概率公式求解即可求得乙获胜的概率.
    【详解】
    (1)画树状图如下:
    由图可知,共有种等可能的结果,其中能使乙获胜的有种结果数,
    乙获胜的概率为,
    故选C.
    本题考查的是用树状图法求概率,树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.
    2、B
    【解析】
    由已知和旋转的性质可判断A项,进一步可判断C项;利用SAS可证明△AED≌△AEF,可得ED=EF,容易证明△FBE是直角三角形,由此可判断D项和B项,于是可得答案.
    【详解】
    解:∵△ADC绕点A顺时针旋转90°得△AFB,
    ∴△ADC≌△AFB,∠FAD=90°,AD=AF,
    ∵∠DAE=45°,
    ∴∠FAE=90°-∠DAE=45°,所以A正确;
    ∴∠DAE=∠FAE,
    ∴平分,所以C正确;

    ∴△AED≌△AEF(SAS),
    ∴ED=EF,
    在Rt△ABC中,∠ABC+∠C=90°,
    又∵∠C=∠ABF,
    ∴∠ABC+∠ABF=90°,即∠FBE=90°,
    ∴在Rt△FBE中,由勾股定理得:,
    ∴,所以D正确;
    而BE、CD不一定相等,所以BE、BF不一定相等,所以B不正确.
    故选B.
    本题考查了等腰直角三角形的性质、旋转的性质、勾股定理以及全等三角形的判定和性质,解题时注意旋转前后的对应关系.
    3、C
    【解析】
    由题意结合函数图象的性质与实际意义,进行分析和判断.
    【详解】
    解:∵小刚在原地休息了6分钟,
    ∴排除A,
    又∵小刚再休息后以500米/分的速度骑回出发地,可知小刚离出发地的距离越来越近,
    ∴排除B、D,只有C满足.
    故选:C.
    本题考查一次函数图象所代表的实际意义,学会判断横坐标和纵坐标所表示的实际含义以及运用数形结合思维分析是解题的关键.
    4、D
    【解析】
    由“直角三角形斜边上的中线等于斜边的一半”求得AC=2DE=10;然后在直角△ACD中,利用勾股定理来求线段CD的长度即可.
    【详解】
    ∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,
    ∴DE= AC=5,
    ∴AC=10.
    在直角△ACD中,∠ADC=90°,AD=6,AC=10,则根据勾股定理,得
    CD= =8.
    故选D
    此题考查勾股定理,直角三角形斜边上的中线,解题关键在于利用勾股定理求值
    5、B
    【解析】
    根据最简二次根式的定义即可求解.
    【详解】
    A. ,分母出现根号,故不是最简二次根式;
    B. 为最简二次根式;
    C. =2,故不是最简二次根式;
    D. ,根号内含有小数,故不是最简二次根式,
    故选B.
    此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.
    6、B
    【解析】
    根据中心对称图形的概念,轴对称图形与中心对称图形是图形沿对称中心旋转180度后与原图重合,即可解题.
    A、不是中心对称图形,故本选项错误;
    B、是中心对称图形,故本选项正确;
    C、不是中心对称图形,故本选项错误;
    D、不是中心对称图形,故本选项错误.
    故选B.
    考点:中心对称图形.
    【详解】
    请在此输入详解!
    7、D
    【解析】
    ①易证得△ABE≌△BCF(ASA),则可得结论①正确;
    ②由△ABE≌△BCF,可得∠FBC=∠BAE,证得∠BAE+∠ABF=90°即可知选项②正确;
    ③根据△BCD是等腰直角三角形,可得选项③正确;
    ④证明△OBE≌△OCF,根据正方形的对角线将面积四等分,即可得出选项④正确.
    【详解】
    解:①∵四边形ABCD是正方形,
    ∴AB=BC,∠ABE=∠BCF=90°,
    在△ABE和△BCF中,AB=BC,∠ABE=∠BCF,BE=CF,
    ∴△ABE≌△BCF(SAS),
    ∴AE=BF,
    故①正确;
    ②由①知:△ABE≌△BCF,
    ∴∠FBC=∠BAE,
    ∴∠FBC+∠ABF=∠BAE+∠ABF=90°,
    ∴AE⊥BF,
    故②正确;
    ③∵四边形ABCD是正方形,
    ∴BC=CD,∠BCD=90°,
    ∴△BCD是等腰直角三角形,
    ∴BD=BC,
    ∴CE+CF=CE+BE=BC=,
    故③正确;
    ④∵四边形ABCD是正方形,
    ∴OB=OC,∠OBE=∠OCF=45°,
    在△OBE和△OCF中,OB=OC,∠OBE=∠OCF,BE=CF,
    ∴△OBE≌△OCF(SAS),
    ∴S△OBE=S△OCF,
    ∴S四边形OECF=S△COE+S△OCF=S△COE+S△OBE=S△OBC=S正方形ABCD,
    故④正确;
    故选:D.
    此题考查了正方形的性质,全等三角形的判定与性质以及等腰直角三角形的性质.注意掌握全等三角形的判定与性质是解此题的关键.
    8、C
    【解析】
    解一元一次不等式ax+b>0(或<0)可以归结为以下两种:(1)从函数值的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;(2)从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有点的横坐标所构成的集合。
    【详解】
    观察图像,可知在x轴的上方所有x的取值,都满足y>0,结合直线过点(-2,0)
    可知当x>-2时,都有y>0
    即x>-2时,一元一次不等式kx+b>0.
    故选:C
    此题考查一次函数与一元一次不等式,解题关键在于结合函数图象求解
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    分别写出、、的坐标找到变化规律后写出答案即可.
    【详解】
    解:、,

    的坐标为:,
    同理可得:的坐标为:,的坐标为:,

    点横坐标为,即:,
    点坐标为,,
    故答案为:,.
    本题考查了规律型问题,解题的关键是根据点的坐标的变化得到规律,利用得到的规律解题.
    10、乙
    【解析】
    根据方差的定义,方差越小数据越稳定即可得出答案.
    【详解】
    解:两队队员身高平均数均为1.85米,方差分别为,,

    身高较整齐的球队是乙队;
    故答案为:乙.
    本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    11、12
    【解析】
    根据相似三角形的性质列比例式求解即可.
    【详解】
    ∵,,,,
    ∴,
    ∴,
    ∴AC=12.
    故答案为:12.
    本题考查了相似三角形的性质,如果两个三角形相似,那么它们的对应角相等,对应边的比,对应高的比,对应中线的比,对应角平分线的比,对应周长的比都等于相似比;它们对应面积的比等于相似比的平方.
    12、1
    【解析】
    先解分式方程得x=,由分式方程有正整数解,得出a+1=4,或a+1=1,且a≠0,解出a的值,最后根据a为非负整数即可得出答案.
    【详解】
    解:方程两边同时乘以x﹣1,得:
    3﹣ax=3+1(x﹣1),
    解得x=,
    ∵是正整数,且≠1,
    ∴a+1=4,或a+1=1,且a≠0,
    a=1或a=-1(不符合题意,舍去)
    ∴非负整数a的值为:1,
    故答案为:1.
    本题考查了解分式方程,注意不要漏掉分母不能为零的情况.
    13、-1
    【解析】
    增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x-3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出未知字母的值.
    【详解】
    方程两边都乘(x-3),得
    x-1(x-3)=1-m,
    ∵方程有增根,
    ∴最简公分母x-3=0,即增根是x=3,
    把x=3代入整式方程,得m=-1.
    故答案是:-1.
    解决增根问题的步骤:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.
    三、解答题(本大题共5个小题,共48分)
    14、20分钟
    【解析】
    他骑“共享助力车”上班需x分钟,根据骑“共享助力车”的速度是骑“共享单车”的倍列分式方程解得即可.
    【详解】
    设他骑“共享助力车”上班需x分钟,

    解得x=20,
    经检验,x=20是原分式方程的解,
    答:他骑“共享助力车”上班需20分钟.
    此题考查分式方程的实际应用,正确理解题意是解题的关键.
    15、(1)k= ,b= ;(2)
    【解析】
    (1)根据待定系数法可求出解析式,得到k、b的值;
    (2)根据函数解析式与坐标轴的交点,可利用面积公式求出四边形的面积.
    【详解】
    (1)M为l1与l2的交点
    令M(1,y),代入y=2x+4中,解得y=2,
    即M(1,2),
    将M(1,2)代入y=kx+b,得k+b=2①
    将A(-2,0)代入y=kx+b,得-2k+b=0②
    由①②解得k=,b=
    (2)解:由(1)知l2:y=x+ ,当x=0时
    y= 即OB=
    ∴S△AOB= OA·OB= ×2× =
    在y=-2x+4令y=0,得N(2,0)
    又因为A(-2,0),故AN=4
    所以S△AMN= ×AN×ym= ×4×2=4
    故SMNOB=S△AMN-S△AOB=4-=.
    考查了两条直线的相交问题,以及一次函数图象的点的特征,要熟练掌握.
    16、(1)见解析;(2)8
    【解析】
    (1)首先由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD是矩形,根据矩形的性质,易得OC=OD,即可判定四边形CODE是菱形,
    (2)求出OC=OD=2,由菱形的性质即可得出答案.
    【详解】
    证明:∵,,
    ∴四边形为平行四边形
    又∵四边形 是矩形

    ∴四边形为菱形;
    解:∵四边形 是矩形

    又∵

    由知,四边形为菱形
    ∴四边形的周长为.
    考查了矩形的性质、菱形的判定与性质等知识,熟练掌握菱形的判定方法是解题的关键.
    17、(1);(2)
    【解析】
    根据二次根式的运算法则,进行计算即可.
    【详解】
    (1)原式
    (2)原式=
    =
    =
    此题主要考查二次根式的运算,熟练掌握,即可解题.
    18、(1)Q(-3,1)(2)a>3(3)0
    【解析】
    (1)如图,作PA⊥x轴于A,QB⊥x轴于B,则∠PAO=∠OBQ=90°,证明△OBQ≌△PAO(AAS),从而可得OB=PA,QB=OA,继而根据点P的坐标即可求得答案;
    (2)利用点平移的规律表示出Q′点的坐标,然后根据第四象限点的坐标特征得到a的不等式组,再解不等式即可;
    (3)由(2)得,m=-3+a,n=1-a,代入所求式子得 ,继而根据偶次方的非负性即可求得答案 .
    【详解】
    (1)如图,作PM⊥x轴于A,QN⊥x轴于B,则∠PAO=∠OBQ=90°,
    ∴∠P+∠POA=90°,
    由旋转的性质得:∠POQ=90°,OQ=OP,
    ∴∠QOB+∠POA=90°,
    ∴∠QOB=∠P,
    ∴△OBQ≌△PAO(AAS),
    ∴OB=PA,QB=OA,
    ∵点P的坐标为(1,3),
    ∴OB=PA=3,QB=OA=1,
    ∴点Q的坐标为(-3,1);
    (2)把点Q(-3,1)向右平移a个单位长度,向下平移a个单位长度后,
    得到的点M的坐标为(-3+a,1-a),
    而M在第四象限,
    所以,
    解得a>3,
    即a的范围为a>3;
    (3)由(2)得,m=-3+a,n=1-a,



    ∵,
    ∴当a=4时,代数式的最小值为0.
    本题考查了坐标与图形变换-旋转,象限内点的坐标特征,解不等式组,配方法在求最值中的应用等,综合性较强,熟练掌握相关知识是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、4x(x+1)(x-1)
    【解析】
    4x3-4x=4x(x2-1)=4x(x+1)(x-1).
    故答案为4x(x+1)(x-1).
    20、随机
    【解析】
    根据必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件. 可能事件是指在一定条件下,一定不发生的事件. 不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.即可解答
    【详解】
    从中任选一人,可能选的是男生,也可能选的是女生,故为随机事件
    此题考查随机事件,难度不大
    21、6
    【解析】
    由矩形的性质和线段垂直平分线的性质证出OA=AB=OB=6,得出BD=2OB=6,由勾股定理求出AD即可.
    【详解】
    解:∵四边形ABCD是矩形,
    ∴OB=OD,OA=OC,AC=BD,
    ∴OA=OB,
    ∵AE垂直平分OB,
    ∴AB=AO,
    ∴OA=AB=OB=6,
    ∴BD=2OB=12,

    故答案为:
    此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.
    22、1
    【解析】
    分析:利用平行四边形的性质可证明△AOF≌△COE,所以可得△COE的面积为3,进而可得△BOC的面积为8,又因为△BOC的面积=▱ABCD的面积,进而可得问题答案.
    详解::∵四边形ABCD是平行四边形,
    ∴AD∥BC,
    ∴∠EAC=∠BCA,∠AEF=∠CFE,
    又∵AO=CO,
    在△AOE与△COF中

    ∴△AOE≌△COF
    ∴△COEF的面积为3,
    ∵S△BOF=5,
    ∴△BOC的面积为8,
    ∵△BOC的面积=▱ABCD的面积,
    ∴▱ABCD的面积=4×8=1,
    故答案为1.
    点睛:本题考查了平行四边形的性质及全等三角形的判定,解答本题需要掌握两点:①平行四边形的对边相等且平行,②全等三角形的对应边、对应角分别相等.
    23、y=2x+1.
    【解析】
    用待定系数法,把(﹣1,2),(0,1)分别代入y=kx+b,可求得k,b.
    【详解】
    解:把(﹣1,2),(0,1)分别代入y=kx+b得,

    解得,
    所以,y=2x+1.
    故答案为y=2x+1.
    本题考核知识点:待定系数法求一次函数解析式. 解题关键点:掌握求函数解析式的一般方法.
    二、解答题(本大题共3个小题,共30分)
    24、, , .
    【解析】
    (1)直接利用平移的性质得出对应点位置进而得出答案;
    (2)直接利用旋转的性质得出对应点位置进而得出答案;
    (3)直接利用关于点对称的性质得出对称中心即可.
    【详解】
    (1)如图所示:△A1B1C1,即为所求,点C1坐标是:(−2,1);
    故答案为(−2,1);
    (2)如图所示:△A2B1C2,即为所求,点C2坐标是:(−5,0);
    故答案为(−5,0);
    (3)点C. C2关于某点中心对称,对称中心的坐标是:(−3,−1).
    故答案为(−3,−1).
    本题考查了坐标系中作图,解题的关键是根据图形找出相对应的点即可.
    25、详见解析.
    【解析】
    试题分析:分别解不等式①、②,确定不等式组的解集,表示在数轴上即可.
    试题解析:
    解①得:
    解②得:
    在数轴上表示为:
    考点:一元一次不等式组的解法.
    26、12.
    【解析】
    利用正比例函数的定义,设y=k(x-2),然后把已知的一组对应值代入求出k即可得到y与x的关系式;再将x=5代入已求解析式,从而可求出y的值.
    【详解】
    设,
    把代入得

    解得,
    ∴,
    即,
    当时,
    .
    本题考查考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;再将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;然后解方程或方程组,求出待定系数的值,进而写出函数解析式.
    题号





    总分
    得分
    批阅人

    相关试卷

    2024年浙江省杭州西湖区杭州市公益中学九上数学开学达标检测模拟试题【含答案】:

    这是一份2024年浙江省杭州西湖区杭州市公益中学九上数学开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年潮安龙湖中学数学九上开学达标检测模拟试题【含答案】:

    这是一份2024年潮安龙湖中学数学九上开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年浙江省台州市书生中学数学九上开学达标检测模拟试题【含答案】:

    这是一份2024-2025学年浙江省台州市书生中学数学九上开学达标检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map