|试卷下载
搜索
    上传资料 赚现金
    2024年浙江省杭州西湖区杭州市公益中学九上数学开学达标检测模拟试题【含答案】
    立即下载
    加入资料篮
    2024年浙江省杭州西湖区杭州市公益中学九上数学开学达标检测模拟试题【含答案】01
    2024年浙江省杭州西湖区杭州市公益中学九上数学开学达标检测模拟试题【含答案】02
    2024年浙江省杭州西湖区杭州市公益中学九上数学开学达标检测模拟试题【含答案】03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年浙江省杭州西湖区杭州市公益中学九上数学开学达标检测模拟试题【含答案】

    展开
    这是一份2024年浙江省杭州西湖区杭州市公益中学九上数学开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)某校40名学生参加科普知识竞赛(竞赛分数都是整数),竞赛成绩的频数分布直方图如图所示,成绩的中位数落在( )
    A.50.5~60.5 分B.60.5~70.5 分C.70.5~80.5 分D.80.5~90.5 分
    2、(4分)如图,在正方形中,点是的中点,点是的中点,与相交于点,设.得到以下结论:
    ①;②;③则上述结论正确的是( )
    A.①②B.①③
    C.②③D.①②③
    3、(4分)如图,在四边形ABCD中,AC与BD相交于点O,AD∥BC,AC=BD,那么下列条件中不能判定四边形ABCD是矩形的是( )
    A.AD=BCB.AB=CDC.∠DAB=∠ABCD.∠DAB=∠DCB
    4、(4分)已知点P到x轴的距离为1,到y轴的距离为2,则点P的坐标不可能为( )
    A.(1,2)B.(-2,-1)C.(2,-1)D.(2,1)
    5、(4分)已知一个多边形的内角和是它的外角和的两倍,那么它的边数为( )
    A.8B.6C.5D.4
    6、(4分)将若干个小菱形按如图所示的规律排列:第一个图形有5个菱形,第二个图形有9个菱形第三个图形有13个菱形,…,则第9个图形有( )个菱形.
    A.33B.36C.37D.41
    7、(4分)下列说法正确的是( )
    A.对应边都成比例的多边形相似B.对应角都相等的多边形相似
    C.边数相同的正多边形相似D.矩形都相似
    8、(4分)为了解某公司员工的年工资情况,小明随机调查了10位员工,其年工资如下单位:万元:4,4,4,5,6,6,7,7,9,则下列统计量中,能合理反映该公司员工年工资中等水平的是
    A.平均数B.中位数C.众数D.方差
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,将 Rt△ABC 绕直角顶点 A 按顺时针方向旋转 180° 得△AB1C1,写出旋转后 BC 的对应线段_____.
    10、(4分)已知关于的分式方程的解为负数,则的取值范围是 .
    11、(4分)据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根,华罗庚脱口而出:1.你知道他是怎么快速准确地计算出来的吗?请研究解决下列问题:
    已知x3=10648,且x为整数
    ∵1000=103<10648<1003=1000000,
    ∴x一定是______位数
    ∵10648的个位数字是8,
    ∴x的个位数字一定是______;
    划去10648后面的三位648得10,
    ∵8=23<10<33=27,
    ∴x的十位数字一定是_____;
    ∴x=______.
    12、(4分)因式分解:= .
    13、(4分)已知,那么________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在矩形纸片ABCD中,已知边AB=3,BC=5,点E在边CD上,连接AE,将四边形ABCE沿直线AE折叠,得到多边形AB′C′E,且B′C′恰好经过点D.求线段CE的长度.
    15、(8分)如图1,四边形ABCD是正方形,AB=4,点G在BC边上,BG=3,DE⊥AG于点E,BF⊥AG于点F.
    (1)求BF和DE的长;
    (2)如图2,连接DF、CE,探究并证明线段DF与CE的数量关系与位置关系.
    16、(8分)某花圃用花盆培育某种花苗,经过试验发现,每盆花的盈利与每盆株数构成一定的关系.每盆植入3株时,平均每株盈利3元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.
    (1)若每盆增加x株,平均每盆盈利y元,写出y关于x的函数表达式;
    (2)要使每盆的盈利为10元,且每盆植入株数尽可能少,问每盆应植入多少株?
    17、(10分)小泽和小帅两同学分别从甲地出发,骑自行车沿同一条路到乙地参加社会实践活动.如图折线OAB和线段CD分别表示小泽和小帅离甲地的距离y(单位:千米)与时间x(单位:小时)之间函数关系的图象.根据图中提供的信息,解答下列问题:
    (1)小帅的骑车速度为 千米/小时;点C的坐标为 ;
    (2)求线段AB对应的函数表达式;
    (3)当小帅到达乙地时,小泽距乙地还有多远?
    18、(10分)某公司销售部有销售人员14人,为提高工作效率和员工的积极性,准备实行“每月定额销售,超额有奖”的措施.调查这14位销售人员某月的销售量,获得数据如下表:
    (1)求这14位营销人员该月销售量的平均数和中位数
    (2)如果你是该公司的销售部管理者,你将如何确定这个定额?请说明理由.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)计算或化简
    (1) (2)
    20、(4分)如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上,若AC=,∠B=60°,则CD的长为_____.
    21、(4分)如图,的周长为,与相交于点,交于,则的周长为__________.
    22、(4分)已知菱形有一个锐角为60°,一条对角线长为4cm,则其面积为_______ cm1.
    23、(4分)观察下列按顺序排列的等式:,试猜想第n个等式(n为正整数):an=_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)把厚度相同的字典整齐地叠放在桌面上,已知字典顶端离地高度与字典本数成一次函数,根据图中所示的信息:
    (1)若设有x本字典叠成一摞放在这张桌面上,字典的离地高度为y(cm), 求y与x的关系式;
    (2)每本字典的厚度为多少?
    25、(10分)已知:如图,四边形ABCD为矩形,,,点E是CD的中点,点P在AB上以每秒2个单位的速度由A向B运动,设运动时间为t秒.
    (1)当点P在线段AB上运动了t秒时,__________________(用代数式表示);
    (2)t为何值时,四边形PDEB是平行四边形:
    (3)在直线AB上是否存在点Q,使以D、E、Q、P四点为顶点的四边形是菱形?若存在,求出t的值:若不存在,说明理由.
    26、(12分)如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.
    (1)求证:DE=CF;
    (2)求EF的长.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    分析:由频数分布直方图知这组数据共有40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,据此可得.
    详解:由频数分布直方图知,这组数据共有3+6+8+8+9+6=40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,所以中位数落在70.5~80.5分.故选C.
    点睛:本题主要考查了频数(率)分布直方图和中位数,解题的关键是掌握将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
    2、D
    【解析】
    由正方形的性质和全等三角形的判定与性质,直角三角形的性质进行推理即可得出结论.
    【详解】
    解:如图,
    (1)
    所以①成立
    (2)如图延长交延长线于点,
    则:
    ∴为直角三角形斜边上的中线,是斜边的一半,即
    所以②成立
    (3) ∵



    所以③成立
    故选:D
    本题考查的正方形的性质,直角三角形的性质以及全等三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.
    3、B
    【解析】
    有一个角是直角的平行四边形是矩形;有三个角是直角的四边形是矩形;对角线相等的平行四边形是矩形,依据矩形的判定进行判断即可。
    【详解】
    解:A.当AD=BC,AD∥BC时,四边形ABCD是平行四边形,再依据AC=BD,可得四边形ABCD是矩形;
    B.当AB=CD,AD∥BC时,四边形ABCD不一定是平行四边形,也可能是等腰梯形;
    C.当∠DAB=∠ABC,AD∥BC时,∠DAB=∠CBA=90°,再根据AC=BD,可得△ABD≌△BAC,进而得到AD=BC,即可得到四边形ABCD是矩形;
    D.当∠DAB=∠DCB,AD∥BC时,∠ABC+∠BCD=180°,即可得出四边形ABCD是平行四边形,再依据AC=BD,可得四边形ABCD是矩形;
    故选:B.
    此题考查矩形的判定,解题关键在于掌握判定法则
    4、A
    【解析】
    根据点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度求出点P可能的横坐标与纵坐标,即可得解.
    【详解】
    ∵点P到x轴的距离为1,到y轴的距离为2,
    ∴点P的横坐标为2或-2,纵坐标为1或-1,
    ∴点P的坐标不可能为(1,2).
    故选A.
    本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.
    5、B
    【解析】
    根据多边形的外角和是360°,以及多边形的内角和定理即可求解.
    【详解】
    解:设多边形的边数是n,则(n−2)•180=2×360,
    解得:n=6,
    故选:B.
    本题考查了多边形的内角和定理以及外角和定理,正确理解定理是关键.
    6、C
    【解析】
    设第n个图形有an个菱形(n为正整数),观察图形,根据各图形中菱形个数的变化可得出变化规律“an=4n+1(n为正整数)”,再代入n=9即可求出结论.
    【详解】
    解:设第n个图形有an个菱形(n为正整数).
    观察图形,可知:a1=5=4+1,a2=9=4×2+1,a3=13=4×3+1,a4=17=4×4+1,
    ∴an=4n+1(n为正整数),
    ∴a9=4×9+1=1.
    故选:C.
    本题考查了规律型:图形的变化类,根据各图形中菱形个数的变化找出变化规律“an=4n+1(n为正整数)”是解题的关键.
    7、C
    【解析】
    试题分析:根据相似图形的定义,对选项一一分析,排除错误答案.
    解:A、对应边都成比例的多边形,属于形状不唯一确定的图形,故错误;
    B、对应角都相等的多边形,属于形状不唯一确定的图形,故错误;
    C、边数相同的正多边形,形状相同,但大小不一定相同,故正确;
    D、矩形属于形状不唯一确定的图形,故错误.
    故选C.
    考点:相似图形.
    点评:本题考查相似变换的定义,即图形的形状相同,但大小不一定相同的是相似形.
    8、B
    【解析】
    根据题意,结合员工工资情况,从统计量的角度分析可得答案.
    【详解】
    根据题意,了解这家公司的员工的工资的中等水平,
    结合员工情况表,即要全面的了解大多数员工的工资水平,
    故最应该关注的数据的中位数,
    故选:B.
    此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、B1C1.
    【解析】
    根据旋转的性质解答即可.
    【详解】
    ∵将Rt△ABC绕直角顶点A按顺时针方向旋转180°得△AB1C1,
    ∴△ABC≌△AB1C1,
    ∴BC=B1C1,
    ∴旋转后BC的对应线段是B1C1,
    故答案为:B1C1.
    本题考查了旋转的性质,熟记旋转的各种性质以及旋转的三要素是解题的关键.
    10、且.
    【解析】
    试题分析:分式方程去分母得:.
    ∵分式方程解为负数,∴.
    由得和
    ∴的取值范围是且.
    考点:1.分式方程的解;2.分式有意义的条件;3.解不等式;4.分类思想的应用.
    11、两;2;2;22
    【解析】
    根据立方和立方根的定义逐一求解可得.
    【详解】
    已知,且为整数,

    一定是两位数,
    的个位数字是,
    的个位数字一定是,
    划去后面的三位得,

    的十位数字一定是,
    .
    故答案为:两、、、.
    本题主要考查立方根,解题的关键是掌握立方与立方根的定义.
    12、
    【解析】
    直接应用平方差公式即可求解..
    【详解】

    本题考查因式分解,熟记平方差公式是关键.
    13、
    【解析】
    直接利用已知得出,进而代入求出答案.
    【详解】
    解:∵,
    ∴,
    ∴.
    故答案为:.
    此题主要考查了代数式的化简,正确用b代替a是解题关键.
    三、解答题(本大题共5个小题,共48分)
    14、
    【解析】
    设CE=EC'=x,则DE=3−x,由△ADB''∽△DEC,可得ADDE=DB'EC′,列出方程即可解决问题;
    【详解】
    设CE=EC'=x,则DE=3−x,
    ∵∠ADB'+∠EDC'=90°,∠B'AD+∠ADB'=90°,
    ∴∠B'AD=∠EDC',
    ∵∠B'=∠C'=90°,AB'=AB=3,AD=5,
    ∴DB'= = ,
    ∴△ADB'∽△DEC`,
    ∴ ,
    ∴ ,
    ∴x= .
    ∴CE=.
    此题考查翻折变换(折叠问题),相似三角形的判定与性质,解题关键在于利用勾股定理进行计算
    15、(1);(2)DF=CE,DF⊥CE.理由见解析;
    【解析】
    分析:(1)如图1,先利用勾股定理计算出AG==5,再利用面积法和勾股定理计算出 然后证明△ABF≌△DAE,得到DE=AF=;
    (2)作CH⊥DE于H,如图2,先利用△ABF≌△DAE,得到则与(1)的证明方法一样可得△CDH≌△DAE,则于是可判断EH=EF,接着证明△DEF≌△CHE,所以DF=CE,∠EDF=∠HCE,然后利用三角形内角和得到从而判断DF⊥CE.
    详解:(1)如图1,
    ∵四边形ABCD是正方形,
    ∴,
    ∵DE⊥AG,BF⊥AG,

    在Rt△ABG中,AG==5,


    ∴AF===,

    ∴∠ABF=∠DAE,
    在△ABF和△DAE中

    ∴△ABF≌△DAE,
    ∴DE=AF=;
    (2)DF=CE,DF⊥CE.理由如下:
    作CH⊥DE于H,如图2,
    ∵△ABF≌△DAE,


    与(1)的证明方法一样可得△CDH≌△DAE,


    ∴EH=EF,
    在△DEF和△CHE中

    ∴△DEF≌△CHE,
    ∴DF=CE,∠EDF=∠HCE,
    ∵∠1=∠2,

    ∴DF⊥CE.
    点睛:考查正方形的性质, 全等三角形的判定与性质,属于综合题,难度较大.对学生综合能力要求较高.
    16、(1)y=﹣2.5x2+1.5x+9;(2)4株
    【解析】
    (1)设每盆花苗增加x株,则每盆花苗有(x+3)株, 平均单株盈利为(3﹣2.5x)元,根据“每盆盈利=每盆花苗株数×单株盈利”,列函数式即可;
    (2)由题(1)得“每盆花苗株数×单株盈利=1”,解一元二次方程,在两根中取较小正整数就为增加的株数,则每盆的株数可求.
    【详解】
    (1)解:由题意知:每盆花苗增加x株,则每盆花苗有(x+3)株,
    平均单株盈利为:(3﹣2.5x)元,
    则:y=(x+3)(3﹣2.5x)=﹣2.5x2+1.5x+9
    (2)解:由题意得:(x+3)(3﹣2.5x)=1.
    化简,整理得x2﹣3x+2=2.
    解这个方程,得x1=1,x2=2,
    则3+1=4,2+3=5,
    答:每盆应植4株.
    本题考查一元二次方程的应用,解题关键在于读懂题意列出方程.
    17、 (1)16,C(0.5,0);(2);(3)4千米.
    【解析】
    (1)根据时间从1到2小帅走的路程为(24-8)千米,根据速度=路程÷时间即可求得小帅的速度,继而根据小帅的速度求出走8千米的时间即可求得点C的坐标;
    (2)根据图象利用待定系数法即可求得线段AB对应的函数表达式;
    (3)将x=2代入(2)中的解析式求出相应的y值,再用24减去此时的y值即可求得答案.
    【详解】
    (1)由图可知小帅的骑车速度为:(24-8)÷(2-1)=16千米/小时,
    点C的横坐标为:1-8÷16=0.5,
    ∴点C的坐标为(0.5,0),
    故答案为千米/小时;(0.5,0);
    (2)设线段对应的函数表达式为,
    ∵,,
    ∴,
    解得:,
    ∴线段对应的函数表达式为;
    (3)当时,,
    ∴24-20=4,
    答:当小帅到达乙地时,小泽距乙地还有4千米.
    本题考查了一次函数的应用,弄清题意,找出求解问题所需要的条件,利用数形结合思想是解题的关键.
    18、(1)平均数38(件);中位数:30(件);(2)答案见解析
    【解析】
    (1)按照平均数,中位数的定义分别求得.
    (2)根据平均数,中位数的意义回答.
    【详解】
    (1)解:平均数=38(件)
    中位数:30(件)
    (2)解:定额为38件,因为平均数反映平均程度;
    或:定额为30件,因为中位数可以反映一半员工的工作状况,把一半以上作为目标;
    或:除去最高分、最低分的平均数为=30.75≈31(件)
    因为除去极端情形较合理.
    本题考查了学生对平均数、中位数的计算及运用其进行分析的能力.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(1);
    【解析】
    (1)根据根式的计算法则计算即可.
    (2)采用平方差公式计算即可.
    【详解】
    (1)原式

    (2)原式
    本题主要考查根式的计算,这是必考题,应当熟练掌握.
    20、1
    【解析】
    试题分析:∵直角△ABC中,AC=,∠B=60°,
    ∴AB==1,BC==2,
    又∵AD=AB,∠B=60°,
    ∴△ABD是等边三角形,
    ∴BD=AB=1,
    ∴CD=BC﹣BD=2﹣1=1.
    故答案是:1.
    考点:旋转的性质.
    21、1
    【解析】
    根据平行四边形的性质,两组对边分别平行且相等,对角线相互平分,OE⊥AC可说明EO是线段AC的中垂线,中垂线上任意一点到线段两端点的距离相等,则AE=CE,再利用平行四边形ABCD的周长为20可得AD+CD=1,进而可得△DCE的周长.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴AB=CD,AD=BC,点O平分BD、AC,即OA=OC,
    又∵OE⊥AC,
    ∴OE是线段AC的中垂线,
    ∴AE=CE,
    ∴AD=AE+ED=CE+ED,
    ∵▱ABCD的周长为20cm,
    ∴CD+AD=1cm,
    ∴的周长= CE+ED +CD=AD+CD=1cm,
    故答案为:1.
    本题考查平行四边形的性质,中垂线的判定及性质,关键是掌握平行四边形平行四边形的对边相等.平行四边形的对角线互相平分.
    22、或
    【解析】
    首先根据题意画出图形,由菱形有一个锐角为60°,可得△ABD是等边三角形,然后分别从较短对角线长为4cm与较长对角线长为4cm,去分析求解即可求得答案.
    【详解】
    解:∵四边形ABCD是菱形,∠BAD=60°,
    ∴AB=AD,AC⊥BD,AO=OC,BO=OD,
    ∴△ABD是等边三角形,
    ①BD=4cm,则OB=1cm,
    ∴AB=BD=4cm;
    ∴OA==(cm),
    ∴AC=1OA=4(cm),
    ∴S菱形ABCD=AC•BD=(cm1);
    ②AC=4cm.
    ∵四边形ABCD是菱形,
    ∴AO=1cm,∠BAO=30°,
    ∴AB= 1OB,
    ∴,即,
    ∴OB=(cm),BD= cm
    ∴S菱形ABCD=AC•BD=(cm1);
    综上可得:其面积为 cm1或 cm1.
    故答案为:或 .
    本题考查菱形的性质、等边三角形的判定与性质以及勾股定理.解题的关键是熟练掌握菱形的四边相等、对角线互相垂直且平分的性质.
    23、.
    【解析】
    根据题意可知,
    ∴.
    二、解答题(本大题共3个小题,共30分)
    24、(1)y=5x+85,(2)5cm.
    【解析】
    分析:(1)利用待定系数法即可解决问题;
    (2)每本字典的厚度==5(cm).
    详(1)解:根据题意知y与x之间是一次函数关系,故设y与x之间的关系的关系式为y=kx+b则

    解得:k=5,b=85
    ∴关系式为y=5x+85,
    (2)每本字典的厚度==5(cm).
    点睛:本题考查一次函数的应用、解题的关键是熟练掌握待定系数法解决问题.
    25、(1);(2)当时,四边形PDEB是平行四边形;(3)t的值为或或.
    【解析】
    (1)求出PA,根据线段和差定义即可解决问题.
    (2)根据,构建方程即可解决问题.
    (3)①当时,可得四边形DEPQ,四边形是菱形,②当时,可得四边形是菱形,分别求解即可解决问题.
    【详解】
    解:(1),,

    故答案为.
    (2)当时,四边形PDEB是平行四边形,


    答:当时,四边形PDEB是平行四边形.
    (3)存在.
    ①当时,可得四边形DEPQ,四边形是菱形,
    作于H.
    在中,,,

    或,
    或时,可得四边形DEPQ,四边形是菱形.
    ②当时,可得四边形是菱形,易知:,

    综上所述,满足条件的t的值为或或.
    本题属于四边形即综合题,考查了矩形的性质,菱形的判定和性质,平行四边形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.
    26、见解析;
    【解析】
    试题分析:(1)直接利用三角形中位线定理得出DEBC,进而得出DE=FC;
    (2)利用平行四边形的判定与性质得出DC=EF,进而利用等边三角形的性质以及勾股定理得出EF的长
    试题解析:(1)证明:∵D、E分别为AB、AC的中点, ∴DEBC,
    ∵延长BC至点F,使CF=BC, ∴DEFC, 即DE=CF;
    (2)解:∵DEFC, ∴四边形DEFC是平行四边形, ∴DC=EF,
    ∵D为AB的中点,等边△ABC的边长是2, ∴AD=BD=1,CD⊥AB,BC=2, ∴DC=EF=.
    考点:三角形中位线定理;等边三角形的性质;平行四边形的判定与性质
    题号





    总分
    得分
    月销售量(件)
    145
    55
    37
    30
    24
    18
    人数(人)
    1
    1
    2
    5
    3
    2
    相关试卷

    2024-2025学年浙江省杭州市高桥九上数学开学达标检测试题【含答案】: 这是一份2024-2025学年浙江省杭州市高桥九上数学开学达标检测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    浙江省杭州西湖区杭州市公益中学2023-2024学年数学九上期末联考试题含答案: 这是一份浙江省杭州西湖区杭州市公益中学2023-2024学年数学九上期末联考试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,若,则等于等内容,欢迎下载使用。

    浙江省杭州市西湖区公益中学校中考二模数学试题: 这是一份浙江省杭州市西湖区公益中学校中考二模数学试题,文件包含浙江省杭州市西湖区公益中学校中考二模数学试题原卷版docx、浙江省杭州市西湖区公益中学校中考二模数学试题解析版docx等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map