终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2025届四川省成都市都江堰区数学九年级第一学期开学质量跟踪监视试题【含答案】

    立即下载
    加入资料篮
    2025届四川省成都市都江堰区数学九年级第一学期开学质量跟踪监视试题【含答案】第1页
    2025届四川省成都市都江堰区数学九年级第一学期开学质量跟踪监视试题【含答案】第2页
    2025届四川省成都市都江堰区数学九年级第一学期开学质量跟踪监视试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届四川省成都市都江堰区数学九年级第一学期开学质量跟踪监视试题【含答案】

    展开

    这是一份2025届四川省成都市都江堰区数学九年级第一学期开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边 BC 上一动点,PE⊥AB 于 E,PF⊥AC于 F,M 为 EF 中点,则 AM 的最小值为( )
    A.1B.1.3C.1.2D.1.5
    2、(4分)如图,A,B,C是⊙O上三点,∠α=140°,那么∠A等于( ).
    A.70°B.110°C.140°D.220°
    3、(4分)服装店为了解某品牌外套销售情况,对各种码数销量进行统计店主最应关注的统计量是( )
    A.平均数B.中位数C.方差D.众数
    4、(4分)小宸同学的身高为,测得他站立在阳光下的影长为,紧接着他把手臂竖直举起,测得影长为,那么小宸举起的手臂超出头顶的高度为( )
    A.B.C.D.
    5、(4分)菱形具有而矩形不一定具有的性质是 ( )
    A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补
    6、(4分)如图,,要根据“”证明,则还要添加一个条件是( )
    A.B.C.D.
    7、(4分)如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC于点 E.若AB=8,BC=14,则线段EF的长为( )
    A.2B.3C.5D.6
    8、(4分)已知实数,若,则下列结论错误的是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)若直线y=kx+b与直线y=2x平行,且与y轴相交于点(0,﹣3),则直线的函数表达式是_________.
    10、(4分)在平面直角坐标系中,若点P(2x+6,5x)在第四象限,则x的取值范围是_________;
    11、(4分)等边三角形的边长是4,则高AD_________ (结果精确到0.1)
    12、(4分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2……按如图所示放置,点A1、A2、A3……在直线y=x+1上,点C1、C2、C3……在x轴上,则A2019的坐标是___.
    13、(4分)如果两个最简二次根式与能合并,那么______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图1,在△ABC中,按如下步骤作图:①以点A为圆心,AB长为半径画弧;②以点C为圆心,CB长为半径画弧,两弧相交于点D;③连结BD,与AC交于点E,连结AD,CD.
    (1)填空:△ABC≌△ ;AC和BD的位置关系是
    (2)如图2,当AB=BC时,猜想四边形ABCD是什么四边形,并证明你的结论.
    (3)在(2)的条件下,若AC=8cm,BD=6cm,则点B到AD的距离是 cm,若将四边形ABCD通过割补,拼成一个正方形,那么这个正方形的边长为 cm.
    15、(8分)积极推行节能减排,倡导绿色出行,“共享单车”、共享助力车”先后上市,为人们出行提供了方便.某人去距离家千米的单位上班,骑“共享助力车”可以比骑“共享单车”少用分钟,已知他骑“共享助力车”的速度是骑“共享单车”的倍,求他骑“共享助力车”上班需多少分钟?
    16、(8分)某班“数学兴趣小组”对函数y=x−2|x|的图象和性质进行了探究,探究过程如下,请补充完整:
    (1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:
    其中,m=___.
    (2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.
    (3)探究函数图象发现:
    ①函数图象与x轴有___个交点,所以对应的方程x−2|x|=0有___个实数根;
    ②方程x−2|x|=−有___个实数根;
    ③关于x的方程x−2|x|=a有4个实数根时,a的取值范围是___.
    17、(10分)甲、乙两人分别骑自行车和摩托车沿相同路线由A地到相距80千米的B地,行驶过程中的函数图象如图所示,请根据图象回答下列问题:
    (1)谁先出发早多长时间谁先到达B地早多长时间?
    (2)两人在途中的速度分别是多少?
    (3)分别求出表示甲、乙在行驶过程中的路程与时间之间的函数关系式(不要求写出自变量的取值范围).
    18、(10分)如图,在△ABC中,AC=BC,∠C=90°,D是BC上的一点,且BD=CD.
    (1)尺规作图:过点D作AB的垂线,交AB于点F;
    (2)连接AD,求证:AD是△ABC的角平分线.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)在实数范围内分解因式:5-x2=_____.
    20、(4分)计算:_____.
    21、(4分)如图是我国古代数学家赵爽的《勾股圆方图》,由四个全等的直角三角形和一个小正方形拼成的大正方形.如果图中大、小正方形的面积分别为52和4,直角三角形两条直角边分别为x,y,那么=_____.
    22、(4分)如果关于x的方程bx2=2有实数解,那么b的取值范围是_____.
    23、(4分)平行四边形ABCD中,∠ABC的平分线将AD边分成的两部分的长分别为2和3,则平行四边形ABCD的周长是
    _____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在正方形中,点分别是上的点,且.求证:.
    25、(10分)如图1,将纸片折叠,折叠后的三个三角形可拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼合成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.
    (1)将纸片按图2的方式折叠成一个叠合矩形,则操作形成的折痕分别是线段_______,__________;___________.
    (2)将纸片按图3的方式折叠成一个叠合矩形,若,,求的长;
    (3)如图4,四边形纸片满足,,,,,小明把该纸片折叠,得到叠合正方形,请你帮助画出一种叠合正方形的示意图,并求出、的长.
    26、(12分)一次安全知识测验中,学生得分均为整数,满分10分,这次测验中,甲,乙两组学生人数都为5人,成绩如下(单位:分):
    甲:8,8,7,8,9
    乙:5,9,7,10,9
    (1)填写下表:
    (2)已知甲组学生成绩的方差,计算乙组学生成绩的方差,并说明哪组学生的成绩更稳定.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    首先证明四边形AEPF为矩形,可得AM=AP,最后利用垂线段最短确定AP的位置,利用面积相等求出AP的长,即可得AM.
    【详解】
    在△ABC中,因为AB2+AC2=BC2,
    所以△ABC为直角三角形,∠A=90°,
    又因为PE⊥AB,PF⊥AC,
    故四边形AEPF为矩形,
    因为M 为 EF 中点,
    所以M 也是 AP中点,即AM=AP,
    故当AP⊥BC时,AP有最小值,此时AM最小,
    由,可得AP=,
    AM=AP=
    故本题正确答案为C.
    本题考查了矩形的判定和性质,确定出AP⊥BC时AM最小是解题关键.
    2、B
    【解析】
    解:根据周角可以计算360°﹣∠α=220°,
    再根据圆周角定理,得∠A的度数.
    ∵∠1=360°﹣∠α=220°,
    ∴∠A=∠1=220°÷2=110°.
    故选B.
    考点:圆周角定理.
    3、D
    【解析】
    根据题意,应该关注哪种尺码销量最多.
    【详解】
    由于众数是数据中出现次数最多的数,故应该关注这组数据中的众数.
    故选D
    本题考查了数据的选择,根据题意分析,即可完成。属于基础题.
    4、C
    【解析】
    根据在同一时物体的高度和影长成正比,设出手臂竖直举起时总高度x,即可列方程解出x的值,再减去身高即可得出小刚举起的手臂超出头顶的高度.
    【详解】
    解:设手臂竖直举起时总高度xm,列方程得:

    解得:x=2.4,
    2.4-1.8=0.6m,
    ∴小宸举起的手臂超出头顶的高度为0.6m.
    故选:C.
    本题考查了相似三角形的应用,解答此题的关键是明确在同一时刻物体的高度和影长成正比.
    5、A
    【解析】
    菱形的对角线互相垂直平分,矩形的对角线相等互相平分.
    则菱形具有而矩形不一定具有的性质是:对角线互相垂直
    故选A
    6、A
    【解析】
    根据垂直定义求出∠CFD=∠AEB=90°,再根据得出,再根据全等三角形的判定定理推出即可.
    【详解】
    添加的条件是AB=CD;理由如下:
    ∵AE⊥BC,DF⊥BC,
    ∴∠CFD=∠AEB=90°,
    ∵,
    ∴,
    在Rt△ABE和Rt△DCF中,
    ∴Rt△ABE=R△DCF(HL)
    所以A选项是正确的.
    本题考查了全等三角形的判定定理的应用,能灵活运用全等三角形的判定定理进行推理是解此题的关键.
    7、B
    【解析】
    根据直角三角形斜边上中线是斜边的一半可得DF= AB=AD=BD=4且∠ABF=∠BFD,结合角平分线可得∠CBF=∠DFB,即DE∥BC,进而可得DE=7,由EF=DE-DF可得答案.
    【详解】
    ∵AF⊥BF,
    ∴∠AFB=90°,
    ∵AB=8,D为AB中点,
    ∴DF=AB=AD=BD=4,
    ∴∠ABF=∠BFD,
    又∵BF平分∠ABC,
    ∴∠ABF=∠CBF,
    ∴∠CBF=∠DFB,
    ∴DE∥BC,
    ∴AE=EC,
    ∴DE=BC=7,
    ∴EF=DE−DF=3,
    此题考查三角形中位线定理,直角三角形斜边上的中线,解题关键在于利用直角三角形斜边上中线的定理
    8、C
    【解析】
    根据不等式的性质,可得答案.
    【详解】
    解:A.两边都加6,不等号的方向不变,故A正确;
    B.两边都减2,不等号的方向不变,故B正确;
    C.两边都乘﹣2,不等号的方向改变,故C错误;
    D.两边都除以3,不等号的方向不变,故D正确.
    故选C.
    本题考查了不等式的性质,掌握不等式的性质是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、y=2x﹣1.
    【解析】
    根据两条直线平行问题得到k=2,然后把点(0,﹣1)代入y=2x+b可求出b的值,从而可确定所求直线解析式.
    【详解】
    ∵直线y=kx+b与直线y=2x平行,
    ∴k=2,
    把点(0,﹣1)代入y=2x+b得
    b=﹣1,
    ∴所求直线解析式为y=2x﹣1.
    故答案为:y=2x﹣1.
    考查了待定系数法求函数解析式以及两条直线相交或平行问题,解题时注意:若直线y=k1x+b1与直线y=k2x+b2平行,则k1=k2.
    10、﹣3<x<1
    【解析】
    根据第四象限内横坐标为正,纵坐标为负可得出答案.
    【详解】
    ∵点P(2x-6,x-5)在第四象限,

    解得-3<x<1.故答案为-3<x<1.
    本题考查了点的坐标、一元一次不等式组,解题的关键是知道平面直角坐标系中第四象限横、纵坐标的符号.
    11、3.1
    【解析】
    根据等边三角形的性质及勾股定理进行计算即可.
    【详解】
    如图,三角形ABC为等边三角形,AD⊥BC,AB=4,
    ∵三角形ABC为等边三角形,AD⊥BC,
    ∴BD=CD=2,
    在中,.
    故答案为:3.1.
    本题考查等边三角形的性质和勾股定理,掌握“三线合一”的性质及勾股定理是解题关键.
    12、(22008-1,22008)
    【解析】
    先求出A1、A2、A3的坐标,找出规律,即可求解.
    【详解】
    ∵直线y=x+1和y轴交于A1,
    ∴A1的交点为(0,1)
    ∵四边形A1B1C1O是正方形,
    ∴OC1=OA1=1,
    把x=1代入直线得y=2,
    ∴A2(1,2)
    同理A3(3,4)

    ∴An的坐标为(2n-1-1,2n-1)
    故A2019的坐标为(22008-1,22008)
    此题主要考查一次函数的图像,解题的关键是根据题意找到规律进行求解.
    13、1
    【解析】
    ∵两个最简二次根式能合并,
    ∴ ,解得:a=1.
    故答案为1.
    三、解答题(本大题共5个小题,共48分)
    14、(1)ADC(SSS),AC⊥BD;(2)四边形ABCD是菱形,见解析;(3),2.
    【解析】
    (1)根据作法和三角形全等的判定方法解答,再根据到线段两端点距离相等的点在线段的垂直平分线上可得AC⊥BD;
    (2)根据四条边都相等的四边形是菱形证明;
    (3)设点B到AD的距离为h,然后根据菱形的面积等于底边×高和菱形的面积等于对角线乘积的一半列方程求解即可;再根据正方形的面积公式和菱形的面积求解.
    【详解】
    (1)由图可知,AB=AD,CB=CD,
    在△ABC和△ADC中,

    ∴△ABC≌△ADC(SSS),
    ∵AB=AD,
    ∴点A在BD的垂直平分线上,
    ∵CB=CD,
    ∴点C在BD的垂直平分线上,
    ∴AC垂直平分BD,
    ∴AC⊥BD;
    (2)四边形ABCD是菱形.
    理由如下:由(1)可得AB=AD,CB=CD,
    ∵AB=BC,
    ∴AB=BC=CD=DA,
    ∴四边形ABCD是菱形;
    (3)设点B到AD的距离为h,
    在菱形ABCD中,AC⊥BD,且AO=CO=4,BO=DO=3,
    在Rt△ADO中,AD==5,
    S菱形ABCD=AC•BD=AD•h,
    即×8×6=5h,
    解得h=,
    设拼成的正方形的边长为a,则a2=×8×6,
    解得a=2cm.
    所以,点B到AD的距离是cm,拼成的正方形的边长为2cm.
    本题考查了全等三角形的判定与性质,菱形的判定与性质,勾股定理,读懂题目信息,找出三角形全等的条件是解题的关键.
    15、20分钟
    【解析】
    他骑“共享助力车”上班需x分钟,根据骑“共享助力车”的速度是骑“共享单车”的倍列分式方程解得即可.
    【详解】
    设他骑“共享助力车”上班需x分钟,

    解得x=20,
    经检验,x=20是原分式方程的解,
    答:他骑“共享助力车”上班需20分钟.
    此题考查分式方程的实际应用,正确理解题意是解题的关键.
    16、(1)0;(2)见解析;(3)①3、3;②4;③0

    相关试卷

    2025届四川省简阳市镇金区数学九上开学质量跟踪监视试题【含答案】:

    这是一份2025届四川省简阳市镇金区数学九上开学质量跟踪监视试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届安阳市数学九年级第一学期开学质量跟踪监视试题【含答案】:

    这是一份2025届安阳市数学九年级第一学期开学质量跟踪监视试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年四川省资阳市雁江区数学九年级第一学期开学质量跟踪监视模拟试题【含答案】:

    这是一份2024年四川省资阳市雁江区数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map