2025届四川省简阳市镇金区数学九上开学质量跟踪监视试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若直角三角形的两条直角边的长分别为6和8,则斜边上的中线长是( )
A.6B.5C.7D.不能确定
2、(4分)下列计算正确的是( )
A.=﹣4B.()2=4C. +=D.÷=3
3、(4分)如图,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(2,0),点A在第一象限内,将△OAB沿直线OB的方向平移至△O′B′A′的位置,此时点B′的横坐标为5,则点A′的坐标为( )
A.B.C.D.
4、(4分)一次函数y=kx+b(k≠0)的图象经过点B(﹣6,0),且与正比例函数y=x的图象交于点A(m,﹣3),若kx﹣x>﹣b,则( )
A.x>0B.x>﹣3C.x>﹣6D.x>﹣9
5、(4分)在平面直角坐标系中,点位于( )
A.第一象限B.第二象限C.第三象限D.第四象限
6、(4分)直线的截距是 ( )
A.—3B.—2C.2D.3
7、(4分)一个三角形三边的比为1:2:,则这个三角形是( )
A.等腰三角形B.直角三角形C.锐角三角形D.钝角三角形
8、(4分)使函数y=有意义的自变量x的取值范围是( )
A.x≥6B.x≥0C.x≤6D.x≤0
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,一个宽为2 cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的直径是_____________cm.
10、(4分)如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是_________.
11、(4分)分解因式:5x3﹣10x2=_______.
12、(4分)已知不等式组的解集如图所示(原点没标出,数轴长度为1,黑点和圆圈均在整数的位置),则a的值为______.
13、(4分)若关于x的分式方程﹣=1无解,则m的值为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知y是x的一次函数,当x=1时,y=1;当x=-2时,y=-14.
(1)求这个一次函数的关系式;
(2)在如图所示的平面直角坐标系中作出函数的图像;
(3)由图像观察,当0≤x≤2时,函数y的取值范围.
15、(8分)在▱ABCD中,点E,F分别在边BC,AD上,且AF=CE.
(Ⅰ)如图①,求证四边形AECF是平行四边形;
(Ⅱ)如图②,若∠BAC=90°,且四边形AECF是边长为6的菱形,求BE的长.
16、(8分)如图,在平面直角坐标系中,直线y=x+与反比例函数y=(x<0)的图象交于A(-4,a)、B(-1,b)两点,AC⊥x轴于C,BD⊥y轴于D.
(1)求a 、b及k的值;
(2)连接OA,OB,求△AOB的面积.
17、(10分)某市教育局为了了解初二学生每学期参加综合实践活动的情况,随机抽样调查了某校初二学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图.请你根据图中提供的信息,回答下列问题:
(1)扇形统计图中a的值为 ;
(2)补全频数分布直方图;
(3)在这次抽样调查中,众数是 天,中位数是 天;
(4)请你估计该市初二学生每学期参加综合实践活动的平均天数约是多少?(结果保留整数)
18、(10分)矩形 ABCD 的边长 AB=8,BC=10,MN 经过矩形的中心 O,且 MN=10;沿 MN将矩形剪开(如图 1),拼成菱形 EFGH(如图 2).
试求:(1)CN 的长度;
(2)菱形 EFGH 的两条对角线 EG、FH 的长度.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若直角三角形的两边分别为1分米和2分米,则斜边上的中线长为_________.
20、(4分)如图,把菱形ABCD沿AH折叠,使B点落在BC上的E点处,若∠B=70°,则∠EDC的大小为______.
21、(4分)在菱形中,,为中点,为对角线上一动点,连结和,则的值最小为_______.
22、(4分)如图,已知点P是∠AOB角平分线上的一点,∠AOB=60°, PD⊥OA,M是OP的中点, DM=4cm,如果点C是OB上一个动点,则PC的最小值为________cm.
23、(4分)已知一组数据3、a、4、6的平均数为4,则这组数据的中位数是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)计算:(-4)-(3-2)
25、(10分)如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x轴相交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.
(1)求一次函数y=kx+b的解析式;
(2)若点D在y轴负半轴上,且满足S△COD═S△BOC,请直接写出点D的坐标.
26、(12分)计算:
(1)﹣;
(2)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
首先根据勾股定理,求出斜边长,然后根据直角三角形斜边中线定理,即可得解.
【详解】
根据勾股定理,得斜边长为
则斜边中线长为5,
故答案为B.
此题主要考查勾股定理和斜边中线定理,熟练掌握,即可解题.
2、D
【解析】
根据二次根式的性质对A、B进行判断;根据二次根式的加减法对C进行判断;根据二次根式的除法法则对D进行判断.
【详解】
A、原式=|﹣4|=4,所以A选项错误;
B、原式=2,所以B选项错误;
C、与不能合并,所以C选项错误;
D、原式==3,所以D选项正确.
故选D.
本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
3、D
【解析】
根据等边三角形的性质和平移的性质即可得到结论.
【详解】
解:∵△OAB是等边三角形,
∵B的坐标为(2,0),
∴A(1,),
∵将△OAB沿直线OB的方向平移至△O′B′A′的位置,此时点B′的横坐标为5,
∴A′的坐标(4,),
故选:D.
本题考查了坐标与图形变化-平移,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.也考查了等边三角形的性质,含30°角的直角三角形的性质.求出点A′的坐标是解题的关键.
4、D
【解析】
先利用正比例函数解析式,确定A点坐标;然后利用函数图像,写出一次函数y=kx+b(k≠0)的图像,在正比例函数图像上方所对应的自变量的范围.
【详解】
解:把A(m,﹣3)代入y=x得m=﹣3,解得m=﹣1,
所以当x>﹣1时,kx+b>x,
即kx﹣x>﹣b的解集为x>﹣1.
故选:D.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图像的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
5、B
【解析】
应先判断出所求点P的横坐标、纵坐标的符号,进而判断其所在的象限.
【详解】
∵点P(−1,2)的横坐标−1<0,纵坐标2>0,
∴点P在第二象限。
故选:B.
此题考查点的坐标,难度不大
6、A
【解析】
由一次函数y=kx+b在y轴上的截距是b,可求解.
【详解】
∵在一次函数y=2x−1中,b=−1,
∴一次函数y=2x−1的截距b=−1.
故选:A.
本题考查了一次函数图象上点的坐标特征.一次函数图象上的点的坐标,一定满足该函数的关系式.
7、B
【解析】
由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.
【详解】
解:这个三角形是直角三角形,理由如下:
因为边长之比满足1:2:,
设三边分别为x、2x、x,
∵(x)2+(2x)²=(x)²,
即满足两边的平方和等于第三边的平方,
∴它是直角三角形.
故选B.
本题考查了勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
8、C
【解析】
根据被开方式是非负数列式求解即可.
【详解】
解:由题意,得
6﹣x≥0,
解得x≤6,
故选:C.
本题考查了函数自变量的取值范围,函数有意义时字母的取值范围一般从几个方面考虑:①当函数解析式是整式时,字母可取全体实数;②当函数解析式是分式时,考虑分式的分母不能为0;③当函数解析式是二次根式时,被开方数为非负数.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、10
【解析】
本题先根据垂径定理构造出直角三角形,然后在直角三角形中已知弦长和弓形高,根据勾股定理求出半径,从而得解.
【详解】
如图,设圆心为O,弦为AB,切点为C.如图所示.则AB=8cm,CD=2cm.
连接OC,交AB于D点.连接OA.
∵尺的对边平行,光盘与外边缘相切,
∴OC⊥AB.
∴AD=4cm.
设半径为Rcm,则R2=42+(R−2)2,
解得R=5,
∴该光盘的直径是10cm.
故答案为:10.
此题考查了切线的性质及垂径定理,建立数学模型是关键.
10、1
【解析】
画出图形,设菱形的边长为x,根据勾股定理求出周长即可.
【详解】
当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为xcm,
在Rt△ABC中,
由勾股定理:x2=(8-x)2+22,
解得:x=,
∴4x=1,
即菱形的最大周长为1cm.
故答案是:1.
解答关键是怎样放置纸条使得到的菱形的周长最大,然后根据图形列方程.
11、5x2(x-2)
【解析】
5x3-10x2=2x2(x-2)
12、2
【解析】
先解出关于x的不等式,由数轴上表示的解集求出的范围即可.
【详解】
解:,
不等式组整理得:,
由数轴得:,可得,
解得:,
故答案为2
此题考查了一元一次不等式组的整数解,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.
13、﹣2或1
【解析】
分式方程去分母转化为整式方程,由分式方程无解确定出x的值,代入整式方程计算即可求出m的值.
【详解】
去分母得:x2﹣mx﹣3x+3=x2﹣x,
解得:(2+m)x=3,
由分式方程无解,得到2+m=0,即m=﹣2或,即m=1,
综上,m的值为﹣2或1.
故答案为:﹣2或1
此题考查了分式方程的解,注意分母不为0这个条件.
三、解答题(本大题共5个小题,共48分)
14、(1)y=5x-4;(2)详见解析;(3)-4≤y≤1.
【解析】
(1)设函数解析式y=kx+b,将题中的两个条件代入即可得出解析式;
(2)根据题意可确定函数上的两个点(1,1)、(-2,-14),运用两点法即可确定函数图象.
(3)根据图象可知,当0≤x≤2时,y的取值范围是-4≤x≤1.
【详解】
解:(1)设函数的关系式为y=kx+b,
则由题意,得 解得,
∴一次函数的关系式为y=5x-4;
(2)所作图形如图.
(3)∵0≤x≤2,
∴y的取值范围是:-4≤y≤1.
故答案为:(1)y=5x-4;(2)图形见解析;(3)-4≤y≤1.
本题考查待定系数法求函数解析式及一次函数图象上点的坐标特征,难度不大,注意掌握一次函数的性质.
15、(1)证明见解析;(2)1.
【解析】
(I)根据平行四边形的性质得出AD∥BC,根据平行四边形的判定推出即可;
(II)根据菱形的性质求出AE=1,AE=EC,求出AE=BE即可.
【详解】
(I)证明:∵四边形ABCD是平行四边形,
∴AD∥BC,
∵AF=CE,
∴四边形AECF是平行四边形;
(II)如图:
∵四边形AECF是菱形,
∴AE=EC,
∴∠1=∠2,
∵∠BAC=90°,
∴∠2+∠3=90°∠1+∠B=90°,
∴∠3=∠B,
∴AE=BE,
∵AE=1,
∴BE=1.
本题考查了平行四边形的性质,等腰三角形的性质,菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.
16、(1)a=,b=2,k= -2 ;(2)S△AOB =
【解析】
(1)把A、B两点坐标代入直线解析式求出a,b的值,从而确定A、B两点坐标,再把A(或B)点坐标代入双曲线解析式求出k的值即可;
(2)设直线AB分别交x轴、y轴于点E,F,根据S△AOB=S△EOF-S△AEO-S△BFO求解即可.
【详解】
(1)将点A(-4,a)、B(-1,b)分别代入表达式中,得:
;,
∴A(-4,)、B(-1,2)
将B(-1,2)代入y=中,得k=-2
所以a=,b=2,k= -2
(2)设直线AB分别交x轴、y轴于点E,F,如图,
对于直线,分别令y=0,x=0,解得:
X=-5,y=,
∴E(-5,0),F(0,)
由图可知:
S△AEO=×OE×AC=,S△BFO=×OF×BD=,
S△EOF=×OE×OF=
∴S△AOB= S△EOF- S△AEO -S△BFO=
本题主要考查了反比例函数与一次函数的交点问题,需要掌握根据待定系数法求函数解析式的方法.解答此类试题的依据是:①求一次函数解析式需要知道直线上两点的坐标;②根据三角形的面积及一边的长,可以求得该边上的高.
17、(1)20;(2)见解析;(3)4,4;(4)4(天).
【解析】
(1)由百分比之和为1可得;
(2)先根据2天的人数及其所占百分比可得总人数,再用总人数乘以对应百分比分别求得3、5、7天的人数即可补全图形;
(3)根据众数和中位数的定义求解可得;
(4)根据加权平均数和样本估计总体思想求解可得.
【详解】
解:(1)a=100﹣(15+20+30+10+5)=20,
故答案为20;
(2)∵被调查的总人数为30÷15%=200人,
∴3天的人数为200×20%=40人,
5天的人数为200×20%=40人,
7天的人数为200×5%=10人,
补全图形如下:
(3)众数是4天、中位数为=4天,
故答案为4、4;
(4)估计该市初二学生每学期参加综合实践活动的平均天数约是2×15%+3×20%+4×30%+5×20%+6×10%+7×5%=4.05≈4(天).
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
18、(1)2;(2)EG=8,FH=4
【解析】
(1)过H作HI⊥FG于I点,则MN=EF=FG=BC=10,AB=DC=8可知GI=6,所以求得CN=(10-6)÷2=2;
(2)过E作⊥FG,交GF的延长线于点.根据题意可知 ,所以可求得EG=8,FH=4
【详解】
(1)
过H作HI⊥FG于I点.
∴MN=EF=FG=BC=10,AB=DC=8,
∴GI=6,
∴CN=(10−6)÷2=2.
(2)过E作⊥FG,交GF的延长线于 点.
∵ ⊥FG,HI⊥FG
∴=∠HIG=90°
在菱形EFGH中,EF=HG,EF∥HG
∴∠EFH1=∠HGI
∴△EFH1≌△HGI
∴H1F=IG=6
∴H1G=16
在Rt△EH1G中,根据勾股定理可得
∵FG=10,IG=6
∴FI=4
在Rt△FHI中,根据勾股定理
本题考查了矩形的性质,菱形的性质,掌握矩形的性质, 菱形的性质是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1分米或分米.
【解析】
分2是斜边时和2是直角边时,利用勾股定理列式求出斜边,然后根据直角三角形斜边上的中线等于斜边的一半解答.
【详解】
2是斜边时,此直角三角形斜边上的中线长=×2=1分米,
2是直角边时,斜边=,
此直角三角形斜边上的中线长=×分米,
综上所述,此直角三角形斜边上的中线长为1分米或分米.
故答案为1分米或分米.
本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,难点在于分情况讨论.
20、15°
【解析】
根据菱形的性质,可得∠ADC=∠B=70°,从而得出∠AED=∠ADE.又因为AD∥BC,故∠DAE=∠AEB=70°,∠ADE=∠AED=55°,即可求解.
【详解】
解:根据菱形的对角相等得∠ADC=∠B=70°.
∵AD=AB=AE,
∴∠AED=∠ADE.
根据折叠得∠AEB=∠B=70°.
∵AD∥BC,
∴∠DAE=∠AEB=70°,
∴∠ADE=∠AED=(180°-∠DAE)÷2=55°.
∴∠EDC=70°-55°=15°.
故答案为:15°.
本题考查了翻折变换,菱形的性质,三角形的内角和定理以及平行线的性质,熟练运用折叠的性质是本题的关键.
21、2
【解析】
根据轴对称的性质,作点E′和E关于BD对称.则连接AE′交BD于点P,P即为所求作的点.PE+PA的最小值即为AE′的长.
【详解】
作点E′和E关于BD对称.则连接AE′交BD于点P,
∵四边形ABCD是菱形,AB=4,E为AD中点,
∴点E′是CD的中点,
∴DE′=DC=×4=2,AE′⊥DC,
∴AE′=.
故答案为2.
此题考查轴对称-最短路线问题,熟知“两点之间线段最短”是解题的关键.
22、1
【解析】
根据角平分线的定义可得,再根据直角三角形的性质求得,然后根据角平分线的性质和垂线段最短得到答案.
【详解】
是角平分线上的一点,,
,
,M是OP的中点,,
,
,
点C是OB上一个动点,
的最小值为P到OB距离,
的最小值,
故答案为1.
本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形的性质,熟记性质并作出辅助线构造成直角三角形是解题的关键.
23、3.5
【解析】
先根据平均数的计算公式求出x的值,再根据中位数的定义即可得出答案.
【详解】
∵数据3、a、4、6的平均数是4,
∴(3+a+4+6)÷4=4,
∴x=3,
把这组数据从小到大排列为:3、3、4、6最中间的数是3.5,
则中位数是3.5;
故答案为:3.5.
此题考查中位数,算术平均数,解题关键在于利用平均数求出a的值.
二、解答题(本大题共3个小题,共30分)
24、3.
【解析】
先将每个二次根式化成最简二次根式之后,再去掉括号,将同类二次根式进行合并.
【详解】
解:(-4)-(3-2)
=(4-)-(-)
=4--+
=3.
故答案为3.
本题考查了二次根式的加减混合运算,最终结果必须是最简二次根式.
25、(1)y=−x+4;(2)(0,−6)
【解析】
(1)利用一次函数图象上点的坐标特征可求出点C的坐标,根据点A. C的坐标,利用待定系数法即可求出k、b的值;
(2)利用一次函数图象上点的坐标特征可求出点B的坐标,设点D的坐标为(0,m)(m<0),根据三角形的面积公式结合S△COD═S△BOC,即可得出关于m的一元一次方程,解之即可得出m的值,进而可得出点D的坐标。
【详解】
(1)当x=1时,y=3x=3,
∴点C的坐标为(1,3).
将A(−2,6)、C(1,3)代入y=kx+b,
得: ,
解得: ,
∴一次函数y=kx+b的表达式为:y=−x+4;
(2)当y=0时,有−x+4=0,
解得:x=4,
∴点B的坐标为(4,0).
设点D的坐标为(0,m)(m<0),
∵S△COD═S△BOC,即−m=××4×3,
解得:m=−6,
∴点D的坐标为(0,−6).
此题考查一次函数图象上点的坐标特点,待定系数法求一次函数解析式,两条直线相交或平行问题,解题关键在于把已知点代入解析式求出k,b的值
26、(1)﹣;(2)13﹣4.
【解析】
(1)先把二次根式化为最简二次根式,然后合并即可;
(2)利用完全平方公式和平方差公式计算.
【详解】
解:(1)原式=3﹣﹣2
=﹣;
(2)原式=5﹣4+4+(13﹣9)
=9﹣4+4
=13﹣4.
本题考查了二次根式的运算,以及完全平方公式和平方差公式的运算,解题的关键是正确的运用运算法则进行运算.
题号
一
二
三
四
五
总分
得分
批阅人
2025届北京市怀柔区名校九上数学开学质量跟踪监视试题【含答案】: 这是一份2025届北京市怀柔区名校九上数学开学质量跟踪监视试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年四川省简阳市镇金区、简城区数学九上开学达标检测模拟试题【含答案】: 这是一份2024年四川省简阳市镇金区、简城区数学九上开学达标检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年四川省简阳市简城区、镇金区数学九上开学达标测试试题【含答案】: 这是一份2024年四川省简阳市简城区、镇金区数学九上开学达标测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。