终身会员
搜索
    上传资料 赚现金

    2025届山东省青岛市城阳第十三中学九上数学开学经典模拟试题【含答案】

    立即下载
    加入资料篮
    2025届山东省青岛市城阳第十三中学九上数学开学经典模拟试题【含答案】第1页
    2025届山东省青岛市城阳第十三中学九上数学开学经典模拟试题【含答案】第2页
    2025届山东省青岛市城阳第十三中学九上数学开学经典模拟试题【含答案】第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届山东省青岛市城阳第十三中学九上数学开学经典模拟试题【含答案】

    展开

    这是一份2025届山东省青岛市城阳第十三中学九上数学开学经典模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)随着人民生活水平的提高,中国春节已经成为中国公民旅游黄金周.国家旅游局数据显示,2017年春节中国公民出境旅游约615万人次,2018,2019两年出境旅游人数持续增长,在2019年春节出境旅游达到700万人次,设2018年与2019年春节出境旅游总量较上一年春节的平均增长率为,则下列方程正确的是( ).
    A.615(1+x)=700B.615(1+2x)=700
    C.D.
    2、(4分)如图,在中,D,E,F分别为BC,AC,AB边的中点,于H,,则DF等于( )
    A.4B.8C.12D.16
    3、(4分)如图,△DEF是由△ABC经过位似变换得到的,点O是位似中心,D,E,F分别是OA,OB,OC的中点,则△DEF与△ABC的面积比是( )
    A.B.C.D.
    4、(4分)已知关于的分式方程无解,则的值为( )
    A.B.C.D.或
    5、(4分)如图,直线与相交于点P,点P的横坐标为-1,则关于x的不等式的解集在数轴上表示为( )
    A.B.
    C.D.
    6、(4分)在平面直角坐标系中,一次函数y=x﹣1和y=﹣x+1的图象与x轴的交点及x轴上方的部分组成的图象可以表示为函数y=|x﹣1|,当自变量﹣1≤x≤2时,若函数y=|x﹣a|(其中a为常量)的最小值为a+5,则满足条件的a的值为( )
    A.﹣3B.﹣5C.7D.﹣3或﹣5
    7、(4分)平行四边形具有的特征是( )
    A.四个角都是直角B.对角线相等
    C.对角线互相平分D.四边相等
    8、(4分)以下列各组数为边长,能构成直角三角形的是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在中,,,,过点作且点在点的右侧.点从点出发沿射线方向以/秒的速度运动,同时点从点出发沿射线方向以/秒的速度运动,在线段上取点,使得,设点的运动时间为秒.当__________秒时,以,,,为顶点的四边形是平行四边形.
    10、(4分)如图,在▱ABCD中,对角线AC、BD相交于点O.如果AC=8,BD=14,AB=x,那么x的取值范围是____.
    11、(4分)当x=时,二次根式的值为_____.
    12、(4分)如图,点G为正方形ABCD内一点,AB=AG,∠AGB=70°,联结DG,那么∠BGD=_____度.
    13、(4分)9的算术平方根是 .
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,已知直线交轴于点,交轴于点,点,是直线上的一个动点.
    (1)求点的坐标,并求当时点的坐标;
    (2)如图,以为边在上方作正方形,请画出当正方形的另一顶点也落在直线上的图形,并求出此时点的坐标;
    (3)当点在上运动时,点是否也在某个函数图象上运动?若是请直接写出该函数的解析式;若不在,请说明理由.
    15、(8分)如图,已知二次函数()的图象与轴交于两点(点在点的左侧),与轴交于点,且,,顶点为.
    (1)求二次函数的解析式;
    (2)点为线段上的一个动点,过点作轴的垂线,垂足为,若,四边形的面积为,求关于的函数解析式,并写出的取值范围;
    (3)探索:线段上是否存在点,使为直角三角形?如果存在,求出点的坐标;如果不存在,请说明理由.
    16、(8分)解不等式组:,并把解集在数轴上表示出来.
    17、(10分)如图,在矩形纸片中,,.将矩形纸片折叠,使点与点重合,求折痕的长.
    18、(10分)如图,已知△ABC三个顶点的坐标分别是A(﹣3,1),B(﹣1,﹣1),C(2,2).
    (1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1,B1,C1的坐标;
    (2)画出△ABC绕点B逆时针旋转90°所得到的△A2B2C2,并求出S.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)分解因式:2a3﹣8a=________.
    20、(4分)若关于的一元二次方程的一个根是,则的值是_______.
    21、(4分)分解因式:m2(a﹣2)+m(2﹣a)= .
    22、(4分)若是方程的解,则代数式的值为____________.
    23、(4分)如图,在Rt△ABC中,∠C=90°,AC=6,BC=1.D,E分别为边BC,AC上一点,将△ADE沿着直线AD翻折,点E落在点F处,如果DF⊥BC,△AEF是等边三角形,那么AE=_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图1摆放时,都可以用“面积法”来证明,请你利用图1或图1证明勾股定理(其中∠DAB=90°)
    求证:a1+b1=c1.
    25、(10分)已知在等腰三角形中,是的中点,是内任意一点,连接,过点作, 交的延长线于点,延长到点,使得,连接.
    (1)如图1,求证:四边形是平行四边形;
    (2)如图2,若,求证:且;
    26、(12分)如图,在平面直角坐标系中,直线: 分别与x轴、y轴交于点B、C,且与直线:交于点A.
    分别求出点A、B、C的坐标;
    直接写出关于x的不等式的解集;
    若D是线段OA上的点,且的面积为12,求直线CD的函数表达式.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    设2018年与2019年春节出境旅游总量较上一年春节的平均增长率为,根据2017年及2019年出境旅游人数,即可得出关于的一元二次方程,即可得解;
    【详解】
    由题意可得:
    故选:C.
    本题主要考查一元二次方程的实际应用,充分理解题意是解决本题的关键.
    2、B
    【解析】
    根据直角三角形斜边上的中线等于斜边的一半求出AC,再根据三角形中位线定理解答即可.
    【详解】
    解:∵AH⊥BC,E为AC边的中点,
    ∴AC=2HE=16,
    ∵D,F分别为BC,AB边的中点,
    ∴DF=AC=8,
    故选:B.
    本题考查的是三角形中位线定理、直角三角形斜边上中线的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
    3、B
    【解析】
    由题意可知△DEF与△ABC的位似比为1︰2,∴其面积比是1︰4,故选B.
    4、D
    【解析】
    分式方程去分母转化为整式方程,由分式方程无解得到x−3=0,确定出x的值,代入整式方程计算即可求出m的值.
    【详解】
    解:去分母得:3−2x−9+mx=−x+3,
    整理得:(m−1)x=9,
    当m−1=0,即m=1时,该整式方程无解;
    当m−1≠0,即m≠1时,由分式方程无解,得到x−3=0,即x=3,
    把x=3代入整式方程得:3m−3=9,
    解得:m=4,
    综上,m的值为1或4,
    故选:D.
    此题考查了分式方程的解,在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.
    5、A
    【解析】
    观察函数图象得到当x>-1时,函数y=x+b的图象都在y=kx-1的图象上方,所以不等式x+b>kx-1的解集为x>-1,然后根据用数轴表示不等式解集的方法对各选项进行判断.
    【详解】
    当x>-1时,x+b>kx-1,
    即不等式x+b>kx-1的解集为x>-1.
    故选A.
    本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了在数轴上表示不等式的解集.
    6、A
    【解析】
    分三种情形讨论求解即可解决问题;
    【详解】
    解:对于函数y=|x﹣a|,最小值为a+1.
    情形1:a+1=0,
    a=﹣1,
    ∴y=|x+1|,此时x=﹣1时,y有最小值,不符合题意.
    情形2:x=﹣1时,有最小值,此时函数y=x﹣a,由题意:﹣1﹣a=a+1,得到a=﹣2.
    ∴y=|x+2|,符合题意.
    情形2:当x=2时,有最小值,此时函数y=﹣x+a,由题意:﹣2+a=a+1,方程无解,此种情形不存在,
    综上所述,a=﹣2.
    故选A.
    本题考查两直线相交或平行问题,一次函数的性质等知识,解题的关键是学会用分类讨论的思想解决问题,属于中考常考题型.
    7、C
    【解析】
    根据平行四边形的性质进行选择.
    【详解】
    平行四边形对角线互相平分,对边平行且相等,对角相等.
    故选C
    本题考核知识点:平行四边形性质. 解题关键点:熟记平行四边形性质.
    8、C
    【解析】
    欲判断能否构成直角三角形,只需验证两小边的平方和是否等于最长边的平方.
    【详解】
    解:A、∵12+()2≠22,∴此组数据不能作为直角三角形的三边长,故本选项错误;
    B、∵22+22≠32,∴此组数据不能作为直角三角形的三边长,故本选项错误;
    C、∵12+()2=()2,∴此组数据能作为直角三角形的三边长,故本选项正确;
    D、∵42+52≠62,∴此组数据不能作为直角三角形的三边长,故本选项错误.
    故选:C.
    此题主要考查了勾股定理逆定理,解答此题关键是掌握勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、或14
    【解析】
    根据点P所在的位置分类讨论,分别画出图形,利用平行四边形的对边相等列出方程,从而求出结论.
    【详解】
    解:①当点P在线段BE上时,
    ∵AF∥BE
    ∴当AD=BC时,此时四边形ABCD为平行四边形
    由题意可知:AD=x,PE=2x
    ∵PC=2cm,
    ∴CE=PE-PC=(2x-2)cm
    ∴BC=BE-CE=(14-2x)cm
    ∴x=14-2x
    解得:x=;
    ②当点P在EB的延长线上时,
    ∵AF∥BE
    ∴当AD=CB时,此时四边形ACBD为平行四边形
    由题意可知:AD=x,PE=2x
    ∵PC=2cm,
    ∴CE=PE-PC=(2x-2)cm
    ∴BC= CE-BE =(2x-14)cm
    ∴x=2x-14
    解得:x=14;
    综上所述:当秒或14秒时,以,,,为顶点的四边形是平行四边形.
    故答案为:秒或14秒.
    此题考查的是平行四边形的性质和动点问题,掌握平行四边形的对边相等和行程问题中的公式是解决此题的关键.
    10、3<x<1
    【解析】
    解:∵四边形ABCD是平行四边形,
    ∴AO=CO,BO=DO,
    ∵AC=8,BD=14,
    ∴AO=4,BO=7,
    ∵AB=x,
    ∴7﹣4<x<7+4,
    解得3<x<1.
    故答案为:3<x<1.
    11、
    【解析】
    把x=代入求解即可
    【详解】
    把x=代入中,得,故答案为
    熟练掌握二次根式的化简是解决本题的关键,难度较小
    12、1.
    【解析】
    根据正方形的性质可得出AB=AD、∠BAD=90°,由AB=AG、∠AGB=70°利用等腰三角形的性质及三角形内角和定理可求出∠BAG的度数,由∠DAG=90°-∠BAG可求出∠DAG的度数,由等腰三角形的性质结合三角形内角和定理可求出∠AGD的度数,再由∠BGD=∠AGB+∠AGD可求出∠BGD的度数.
    【详解】
    ∵四边形ABCD为正方形,
    ∴AB=AD,∠BAD=90°.
    ∵AB=AG,∠AGB=70°,
    ∴∠BAG=180°﹣70°﹣70°=40°,
    ∴∠DAG=90°﹣∠BAG=50°,
    ∴∠AGD=(180°﹣∠DAG)=65°,
    ∴∠BGD=∠AGB+∠AGD=1°.
    故答案为:1.
    本题考查了正方形的性质、等腰三角形的性质以及三角形内角和定理,根据等腰三角形的性质结合三角形内角和定理求出∠AGD的度数是解题的关键.
    13、1.
    【解析】
    根据一个正数的算术平方根就是其正的平方根即可得出.
    【详解】
    ∵,
    ∴9算术平方根为1.
    故答案为1.
    本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1),D(1.2,1.6)或(2.8,-1.6);(2)或,见解析;(3)点F在直线上运动,见解析.
    【解析】
    (1)利用待定系数法求出A,B两点坐标,再构建方程即可解决问题.
    (2)分两种情形:①如图1,当点F在直线上时,过点D作DG⊥x轴于点G,过点F作FH⊥x轴于点H,②如图2,当点E在直线上时,过点D作DG⊥x轴于点G,过点E作EH⊥x轴于点H,过点D作DM⊥EH于点M,分别求解即可解决问题.
    (3)由(2)①可知:点F的坐标F(2m-7,m+3),令x=2m-7,y=m+3,消去m即可得到.
    【详解】
    解:(1)令,则,解得,,,
    易得,
    由得, ,解得,
    由 解得或2.8,
    ∴D(1.2,1.6)或(2.8,-1.6).
    (2)①如图1,当点在直线上时,过点作轴于点,过点作轴于点,
    图1
    设,易证
    ,,
    则,

    ,得,

    ②如图2,当点在直线上时,过点作轴于点,过点作轴于点,
    图2
    过点作于点,
    同①可得,,
    则,,

    得,

    (3) 设D(m,-2m+4),由(2)①可知:F(2m-7,m+3),
    令x=2m-7,y=m+3,消去m得到:
    点在直线上运动.
    故答案为:(1),D(1.2,1.6)或(2.8,-1.6);(2)或,见解析;(3)点F在直线上运动,见解析.
    本题属于一次函数综合题,考查正方形的性质,三角形的面积,全等三角形的判定和性质,待定系数法等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.
    15、(1);(2)的取值范围是;(3)符合条件的点的坐标为
    【解析】
    (1)将,代入即可进行求解;
    (2)先求出二次函数的顶点坐标,令,得,,得到,根据,的坐标求出直线的解析式,得到,,再根据梯形的面积公式列出S的关系式;
    (3)先求出,根据直角三角形的性质分类讨论即可求解.
    【详解】
    解(1)将,代入中
    ∴,
    (2),所以
    令,得,,所以
    设直线的解析式为,将,代入,得
    ,得,所以
    所以,
    的取值范围是
    (3)由

    ①以为直角顶点
    ,舍去
    ②以为直角顶点
    ,所以
    ③以为直角顶点

    ,,无解
    综上,符合条件的点的坐标为
    此题主要考查二次函数综合,解题的关键是熟知二次函数的图像与性质、待定系数法确定函数关系式及直角三角形勾股定理的性质,注意用分类讨论方法.
    16、﹣1<x≤3
    【解析】
    分别求出不等式组中两不等式的解集,找出解集的公共部分即可.
    【详解】
    ,解不等式①,得x>﹣1,解不等式②,得x≤3,所以,原不等式组的解集为﹣1<x≤3,在数轴上表示为:

    本题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解答本题的关键.
    17、.
    【解析】
    过点G作GE⊥BC于E,根据轴对称的性质就可以得出BH=DH,由勾股定理就可以得出GH的值.
    【详解】
    解:如图,∵四边形与四边形关于对称,
    ∴四边形四边形,
    ∴,,,.
    ∵四边形是矩形,
    ∴,,,,
    ∴,
    ∴,
    ∴.
    ∴.
    ∵,,
    ∴,.
    设,则,由勾股定理,得

    解得:.
    ∴,
    ∴,
    ∴.
    在中,由勾股定理,得
    .
    答:.
    本题考查了矩形的性质的运用,轴对称的性质的运用,勾股定理的运用,解答时根据轴对称的性质求解是关键.
    18、(1)见解析,A1,B1,C1的坐标分别为;(3,1),(1,﹣1),(2,2);(2)见解析,2
    【解析】
    (1)利用关于y轴对称的点的坐标特征写出点A1,B1,C1的坐标,然后描点即可;
    (2)利用网格特点和旋转的性质画出点A、C的对应点A2、C2得到△A2B2C2,然后用一个矩形的面积分别减去三个三角形的面积计算.
    【详解】
    (1)如图,△A1B1C1为所作;点A1,B1,C1的坐标分别为;(3,1),(1,﹣1),(2,2)
    (2)如图,△A2B2C2为所作,.
    本题考查了作图-旋转变换和轴对称变换,根据旋转的性质作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、2a(a+2)(a﹣2)
    【解析】
    要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,

    20、
    【解析】
    把x=0代入方程(a-1)x2+x+a2-1=0得a2-1=0,然后解关于a的方程后利用一元二次方程的定义确定满足条件的a的值.
    【详解】
    解:把x=0代入方程(a-1)x2+x+a2-1=0得a2-1=0,解得a1=1,a2=-1,
    而a-1≠0,
    所以a=-1.
    故答案为:-1.
    本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
    21、m(a﹣2)(m﹣1)
    【解析】
    试题分析:将m2(a﹣2)+m(2﹣a)适当变形,然后提公因式m(a﹣2)即可.
    解:m2(a﹣2)+m(2﹣a),
    =m2(a﹣2)﹣m(a﹣2),
    =m(a﹣2)(m﹣1).
    22、1
    【解析】
    根据一元二次方程的解的定义,将x=a代入已知方程,即可求得a2-2a=1,然后将其代入所求的代数式并求值即可.
    【详解】
    解:∵a是方程x2-2x-1=0的一个解,
    ∴a2-2a=1,
    则2a2-4a+2019=2(a2-2a)+2019=2×1+2019=1;
    故答案为:1.
    本题考查的是一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.也考查了代数式求值.
    23、2.
    【解析】
    由题意可得∠CAD=30°,∠AEF=60°,根据勾股定理可求CD=2,由AC∥DF,则∠AEF=∠EFD=60°,且DE=DF,可得∠DEF=∠DFE=60°,可得∠DEC=60°.根据勾股定理可求EC的长,即可求AE的长.
    【详解】
    如图:
    ∵折叠,
    ∴∠EAD=∠FAD,DE=DF,
    ∴∠DFE=∠DEF;
    ∵△AEF是等边三角形,
    ∴∠EAF=∠AEF=60°,
    ∴∠EAD=∠FAD=30°;
    在Rt△ACD中,AC=6,∠CAD=30°,
    ∴CD=2;
    ∵FD⊥BC,AC⊥BC,
    ∴AC∥DF,
    ∴∠AEF=∠EFD=60°,
    ∴∠FED=60°;
    ∵∠AEF+∠DEC+∠DEF=110°,
    ∴∠DEC=60°;
    ∵在Rt△DEC中,∠DEC=60°,CD=2,
    ∴EC=2;
    ∵AE=AC﹣EC,
    ∴AE=6﹣2=2;
    故答案为:2.
    本题考查了翻折问题,等边三角形的性质,勾股定理,求∠CED 度数是本题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、见解析.
    【解析】
    图1,根据三个直角三角形的面积和等于梯形的面积列式化简即可得证;
    图1,连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a,表示出S四边形ADCB=S△ACD+S△ABC,S四边形ADCB=S△ADB+S△DCB,两者相等,整理即可得证.
    【详解】
    利用图1进行证明:
    证明:∵∠DAB=90°,点C,A,E在一条直线上,BC∥DE,则CE=a+b,
    ∵S四边形BCED=S△ABC+S△ABD+S△AED=ab+c1+ab,
    又∵S四边形BCED=(a+b)1,
    ∴ab+c1+ab=(a+b)1,
    ∴a1+b1=c1.
    利用图1进行证明:
    证明:如图,连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a,∵S四边形ADCB=S△ACD+S△ABC=b1+ab.
    又∵S四边形ADCB=S△ADB+S△DCB=c1+a(b﹣a),
    ∴b1+ab=c1+a(b﹣a),
    ∴a1+b1=c1.
    本题考查勾股定理的证明,解题的关键是利用构图法来证明勾股定理.
    25、(1)见解析;(2)见解析;
    【解析】
    (1)利用平行线的性质证明,即可解答
    (2)连接,根据题意得出,再由(1)得出,得到是的中位线,即可解答
    【详解】
    (1)证明:.
    是的中点,.
    又,
    (ASA).
    .
    又,
    四边形是平行四边形.
    (2)证明:如图1,连接,
    图1
    是的中点,
    .
    .
    .
    由(1)知,
    ,又由(1)知,
    .

    是的中位线.
    .

    .
    此题考查等腰三角形的性质,平行线的性质,全等三角形的判定与性质,解题关键在于作辅助线
    26、 A,,;; .
    【解析】
    (1)根据依次函数关系式,分别令x=0,y=0,即可求出一次函数与坐标轴的交点,即
    B、C的坐标,然后再联立两个一次函数关系式为二元一次方程组,即可求解点A的坐标,
    (2)直接解不等式即可求解,
    (3) 设,根据的面积为12,可得:,解得:,即,
    再设直线CD的函数表达式是,把,代入得:,
    解得:,因此直线CD的函数表达式为:.
    【详解】
    直线:,
    当时,,
    当时,,
    则,,
    解方程组:得:,
    则,
    故A,,,
    关于x的不等式的解集为:,
    设,
    的面积为12,
    ,
    解得:,
    ,
    设直线CD的函数表达式是,把,代入得:,
    解得:,
    直线CD的函数表达式为:.
    本题主要考查一次函数图像性质和待定系数法求一次函数关系式,解决本题的关键是要熟练掌握一次函数图象性质和待定系数法求一次函数解析式.
    题号





    总分
    得分
    批阅人

    相关试卷

    2024-2025学年山东省青岛市第九中学九上数学开学经典模拟试题【含答案】:

    这是一份2024-2025学年山东省青岛市第九中学九上数学开学经典模拟试题【含答案】,共20页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。

    山东省青岛市城阳第十三中学2023-2024学年数学九上期末经典试题含答案:

    这是一份山东省青岛市城阳第十三中学2023-2024学年数学九上期末经典试题含答案,共8页。试卷主要包含了下列函数的对称轴是直线的是,已知抛物线y=ax2+bx+c等内容,欢迎下载使用。

    2023-2024学年山东省青岛市城阳第十三中学九上数学期末考试模拟试题含答案:

    这是一份2023-2024学年山东省青岛市城阳第十三中学九上数学期末考试模拟试题含答案,共7页。试卷主要包含了若函数y=,已知,在中,,则边的长度为,在中,,,则的值是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map