2025届山东省昌乐县九上数学开学综合测试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在△ABC中,AB=5,AC=4,∠A=60°,若边AC的垂直平分线DE交AB于点D,连接CD,则△BDC的周长为( )
A.8B.9C.5+D.5+
2、(4分)下列函数(1)(2)(3)(4)(5)中,一次函数有( )个.
A.1B.2C.3D.4
3、(4分)已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则函数y=kx﹣k的图象大致是( )
A.B.C.D.
4、(4分)如图,一次函数与一次函数的图象交于点P(1,3),则关于x的不等式的解集是( )
A.x>2B.x>0C.x>1D.x<1
5、(4分)下列各因式分解的结果正确的是( )
A.B.
C.D.
6、(4分)使函数y=有意义的自变量x的取值范围是( )
A.x≥6B.x≥0C.x≤6D.x≤0
7、(4分)如图,在平行四边形ABCD中,AB=4,CE平分∠BCD交AD边于点E,且AE=3,则BC的长为( )
A.4B.6C.7D.8
8、(4分)若点P(a,2)在第二象限,则a的值可以是( )
A.B.0C.1D.2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)化简;÷(﹣1)=______.
10、(4分)已知是分式方程的根,那么实数的值是__________.
11、(4分)如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m>nx+4n>0的整数解是__________.
12、(4分)计算:-=________.
13、(4分)一个不透明的盒子内装有大小、形状相同的六个球,其中红球1个、绿球2个、白球3个,小明摸出一个球是绿球的概率是________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,已知一次函数y=kx+b的图象经过A(﹣2,﹣1),B(1,3)两点,并且交x轴于点C,交y轴于点D.
(1)求一次函数的解析式;
(2)求点C和点D的坐标;
(3)求△AOB的面积.
15、(8分)如图,平面直角坐标系中,反比例函数y1=的图象与函数y2=mx图象交于点A,过点A作AB⊥x轴于点B,已知点A坐标(2,1).
(1)求反比例函数解析式;
(2)当y2>y1时,求x的取值范围.
16、(8分)已知函数y =(2m+1) x+ m-3
(1) 若函数图象经过原点,求m的值.
(2) 若函数图象在y轴的交点的纵坐标为-2,求m的值.
(3)若函数的图象平行直线y=-3x–3,求m的值.
(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.
17、(10分)已知直线分别交x轴于点A、交y轴于点
求该直线的函数表达式;
求线段AB的长.
18、(10分)如图,点E、F在线段BD上,AF⊥BD,CE⊥BD,AD=CB,DE=BF,求证:AF=CE.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则EC的长为________.
20、(4分)a与5的和的3倍用代数式表示是________.
21、(4分)已知一次函数图像不经过第一象限,求m的取值范围是__________.
22、(4分)当2(x+1)﹣1与3(x﹣2)﹣1的值相等时,此时x的值是_____.
23、(4分)如图,ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE的周长为 .
二、解答题(本大题共3个小题,共30分)
24、(8分)化简:(.
25、(10分)(1)分解因式:a2﹣1+b2﹣2ab
(2)解方程:=+
26、(12分)解方程:
(1)解分式方程:
(2)解一元二次方程x2+8x﹣9=1.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
过点C作CM⊥AB,垂足为M,根据勾股定理求出BC的长,再根据DE是线段AC的垂直平分线可得△ADC等边三角形,则CD=AD=AC=4,代入数值计算即可.
【详解】
过点C作CM⊥AB,垂足为M,
在Rt△AMC中,
∵∠A=60°,AC=4,
∴AM=2,MC=2,
∴BM=AB-AM=3,
在Rt△BMC中,
BC===,
∵DE是线段AC的垂直平分线,
∴AD=DC,
∵∠A=60°,
∴△ADC等边三角形,
∴CD=AD=AC=4,
∴△BDC的周长=DB+DC+BC=AD+DB+BC=AB+BC=5+.
故答案选C.
本题考查了勾股定理,解题的关键是熟练的掌握勾股定理的运算.
2、C
【解析】
根据一次函数的定义进行分析,即可得到答案.
【详解】
解:根据题意,一次函数有:,,,共3个;
故选择:C.
本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.
3、D
【解析】
先根据正比例函数y=kx(k≠0)的函数值y随x的增大而减小,判断出k的符号,再根据一次函数的性质即可得出结论.
【详解】
解:正比例函数y=kx的函数值y随x的增大而减小,
∴k<0,一k>0,
∴一次函数y=kx-k的图像经过一、二、四象限
故选D.
本题考查的是一次函数的图像与系数的关系,解题时注意:一次函数y=kx+b(k≠0)中,当k<0,b>0时,函数的图像经过一、二、四象限.
4、D
【解析】
【分析】观察函数图象得到当x<1时,函数y=x+b的图象都在y=kx+4的图象下方,所以关于x的不等式x+b
【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
5、C
【解析】
将多项式写成整式乘积的形式即是因式分解,且分解到不能再分解为止,根据定义依次判断即可.
【详解】
=a(a+1)(a-1),故A错误;
,故B错误;
,故C正确;
不能分解因式,故D错误,
故选:C.
此题考查因式分解的定义,熟记定义并掌握因式分解的方法及分解的要求是解题的关键.
6、C
【解析】
根据被开方式是非负数列式求解即可.
【详解】
解:由题意,得
6﹣x≥0,
解得x≤6,
故选:C.
本题考查了函数自变量的取值范围,函数有意义时字母的取值范围一般从几个方面考虑:①当函数解析式是整式时,字母可取全体实数;②当函数解析式是分式时,考虑分式的分母不能为0;③当函数解析式是二次根式时,被开方数为非负数.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.
7、C
【解析】
由平行四边形的性质可得AD∥BC,且AD=BC,结合角平分线的性质可求得DE=DC=AB=1,则可求得AD的长,可求得答案.
【详解】
解:∵四边形ABCD为平行四边形,∴AB=CD=1,AD∥BC,AD=BC,∴∠DEC=∠BCE.∵CE平分∠BCD,∴∠DCE=∠BCE,∴∠DEC=∠DCE,∴DE=DC=1.
∵AE=3,∴AD=BC=3+1=2.
故选C.
本题主要考查平行四边形的性质,利用平行线的性质及角平分线的性质求得DE=DC是解题的关键.
8、A
【解析】
根据第二象限内点的横坐标是负数判断.
【详解】
解:∵点P(a,1)在第二象限,
∴a<0,
∴-1、0、1、1四个数中,a的值可以是-1.
故选:A.
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
二、填空题(本大题共5个小题,每小题4分,共20分)
9、-
【解析】
直接利用分式的混合运算法则即可得出.
【详解】
原式,
,
,
.
故答案为.
此题主要考查了分式的化简,正确掌握运算法则是解题关键.
10、1
【解析】
将代入到方程中即可求出m的值.
【详解】
解:将代入,得
解得:
故答案为:1.
此题考查的是根据分式方程的根求分式方程中的参数,掌握分式方程根的定义是解决此题的关键.
11、﹣3
【解析】
令时,解得,故与轴的交点为.由函数图象可得,当时,函数的图象在轴上方,且其函数图象在函数图象的下方,故解集是,所以关于的不等式的整数解为.
12、2
【解析】
试题解析:原式
故答案为
13、
【解析】
绿球的个数除以球的总数即为所求的概率.
【详解】
解:∵一个盒子内装有大小、形状相同的六个球,其中红球1个、绿球2个、白球3个,
∴小明摸出一个球是绿球的概率是:.
故答案为:
此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.
三、解答题(本大题共5个小题,共48分)
14、(1)y=x+;(2)C点坐标为(,0),D点坐标为(0,),(3).
【解析】
分析:(1)先把A点和B点坐标代入y=kx+b得到关于k、b的方程组,解方程组得到k、b的值,从而得到一次函数的解析式;
(2)令x=0,y=0,代入y=x+即可确定C、D点坐标;
(3)根据三角形面积公式和△AOB的面积=S△AOD+S△BOD进行计算即可.
详解:(1)把A(-2,-1),B(1,3)代入y=kx+b得
,
解得,.
所以一次函数解析式为y=x+;
(2)令y=0,则0=x+,解得x=-,
所以C点的坐标为(-,0),
把x=0代入y=x+得y=,
所以D点坐标为(0,),
(3)△AOB的面积=S△AOD+S△BOD
=××2+××1
=.
点睛:本题考查了待定系数法求一次函数解析式:①先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;②将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;③解方程或方程组,求出待定系数的值,进而写出函数解析式.
15、(1)反比例函数的解析式为y=;(1)﹣1<x<0或x>1.
.
【解析】
(1)利用待定系数法即可解决问题;
(1)根据对称性确定点C坐标,观察图象,y1的图象在y1的图象上方的自变量的取值,即为所求.
【详解】
(1)∵反比例函数y1=经过点A(1,1),
∴k=1,
∴反比例函数的解析式为y=;
(1)根据对称性可知:A、C关于原点对称,可得C(﹣1,﹣1),
观察图象可知,当y1>y1时,x的取值范围为﹣1<x<0或x>1.
本题考查反比例函数与一次函数的交点问题,解题的关键是灵活运用所学知识解决问题,学会利用对称性确定点C坐标.
16、(1)m=3;(2)m=1;(3)m=-2;(4)m<-.
【解析】
(1)把原点坐标代入函数y=(2m+1)x+m-3可解出m;
(2)先确定直线y=(2m+1)x+m-3与y轴的交点坐标,再根据题意得到m-3=-2,然后解方程;
(3)根据两直线平行的问题得到2m+1=-3,然后解方程;
(4)根据一次函数的性质得到2m+1<0,然后解不等式.
【详解】
(1)把(0,0)代入y=(2m+1)x+m-3得m-3=0,
解得m=3;
(2)把x=0代入y=(2m+1)x+m-3得y=m-3,则直线y=(2m+1)x+m-3与y轴的交点坐标为(0,m-3),
所以m-3=-2,
解得m=1;
(3)由直线y=(2m+1)x+m-3平行直线y=-3x-3,
所以2m+1=-3,
解得m=-2;
(4)根据题意得2m+1<0,
解得m<.
本题难度中等.主要考查学生对一次函数各知识点的掌握.属于中考常见题型,应加强训练,同时,注意数形结合的应用.
17、(1);(2)AB=.
【解析】
把B点坐标代入中求出b即可;
先利用一次函数解析式确定A点坐标,然后利用勾股定理计算出AB的长.
【详解】
解:把代入得,
所以该直线的函数表达式为;
当时,,解得,则,
所以AB的长.
本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.
18、证明见解析
【解析】
首先证明BE=DF,然后依据HL可证明Rt△ADF≌Rt△CBE,从而可得到AF=CE.
【详解】
解:∵DE=BF,
∴DE+EF=BF+EF,即DF=BE,
在Rt△ADF和Rt△CBE中,,
∴Rt△ADF≌Rt△CBE(HL),
∴AF=CE.
本题考查了全等三角形的性质和判定,熟练掌握全等三角形的性质和判定定理是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
先根据角平分线及平行四边形的性质得出∠BAE=∠AEB,再由等角对等边得出BE=AB,从而求出EC的长.
【详解】
解:∵AE平分∠BAD交BC边于点E,
∴∠BAE=∠EAD,
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC=5,
∴∠DAE=∠AEB,
∴∠BAE=∠AEB,
∴AB=BE=3,
∴EC=BC-BE=5-3=1,
故答案为:1.
本题考查了角平分线、平行四边形的性质及等边对等角,根据已知得出∠BAE=∠AEB是解决问题的关键.
20、3 (a+5)
【解析】
根据题意,先求和,再求倍数.
解:a与5的和为a+5,
a与5的和的3倍用代数式表示是3(a+5).
列代数式的关键是正确理解文字语言中的关键词,比如该题中的“倍”、“和”等,从而明确其中的运算关系,正确地列出代数式.
21、1
【分析】一次函数图像不经过第一象限,则一次函数与y轴的交点在y轴的负半轴或原点.
【详解】
∵图象不经过第一象限,即:一次函数与y轴的交点在y轴的负半轴或原点,
∴1-m<0,m-2≤0
∴m的取值范围为:1
22、-7.
【解析】
根据负整数指数幂的意义化为分式方程求解即可.
【详解】
∵与的值相等,
∴=,
∴,
两边乘以(x+1)(x-2),得
2 (x-2)=3(x+1),
解之得
x=-7.
经检验x=-7是原方程的根.
故答案为-7.
本题考查了负整数指数幂的意义及分式方程的解法,解分式方程的基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.
23、1.
【解析】
∵ABCD的周长为33,∴2(BC+CD)=33,则BC+CD=2.
∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,∴OD=OB=BD=3.
又∵点E是CD的中点,∴OE是△BCD的中位线,DE=CD.∴OE=BC.
∴△DOE的周长="OD+OE+DE=" OD +(BC+CD)=3+9=1,即△DOE的周长为1.
二、解答题(本大题共3个小题,共30分)
24、8-4
【解析】
【分析】运用平方差公式和完全平方公式可求出结果.
【详解】解:原式=2﹣1+3﹣4+4
=8﹣4.
【点睛】本题考核知识点:整式运算.解题关键点:熟记平方差公式和完全平方公式.
25、(1)(a-b+1)(a-b-1) (2)原方程无解.
【解析】
(1)先用完全平方公式再用平方差公式分解.
(2)按照去分母、去括号、移项合并同类项、系数化为1的步骤计算后,检验即可.
【详解】
(1)a2﹣1+b2﹣2ab=(a-b)2-1=(a-b+1)(a-b-1)
(2)方程两边同时乘以(x+2)(x-2)得:
x2-4x+4=x2+4x+4+16
,-8x=16
x=-2
检验:当x=-2时,(x+2)(x-2)=0
所以x=-2是原方程的增根,原方程无解.
本题考查的是分解因式及解分式方程,熟练掌握分解因式的方法及解分式方程的一般步骤是关键,要注意,分式方程必须检验.
26、 (1)x=3; (2)1或-9.
【解析】
(1)按照解分式方程的一般步骤进行解答即可;
(2)根据本题特点,用“因式分解法”进行解答即可.
详解:
(1)解分式方程:
去分母得:,
移项得:,
合并同类项得:,
系数化为1得:,
检验:当时,,
∴原方程的解是:;
(2)解一元二次方程x2+8x﹣9=1,
原方程可化为:,
∴或,
解得:.
点睛:(1)解答第1小题的关键是:①熟知解分式方程的基本思路是:去分母,化分式方程为整式方程;②知道解分式方程,当求得未知数的值后,需检验所得结果是否是原方程的根,再作结论;(2)解第2小题的关键是能够通过因式分解把原方程化为:的形式.
题号
一
二
三
四
五
总分
得分
2024年山东省章丘市实验中学九上数学开学综合测试试题【含答案】: 这是一份2024年山东省章丘市实验中学九上数学开学综合测试试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年山东省新泰市实验中学九上数学开学综合测试模拟试题【含答案】: 这是一份2024年山东省新泰市实验中学九上数学开学综合测试模拟试题【含答案】,共24页。试卷主要包含了选择题,第四象限,解答题等内容,欢迎下载使用。
2024年山东省泰安市泰山区数学九上开学综合测试试题【含答案】: 这是一份2024年山东省泰安市泰山区数学九上开学综合测试试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。