2025届山东省潍坊市昌乐县九上数学开学经典模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)直角三角形中,两直角边分别是12和5,则斜边上的中线长是( )
A.13B.9C.8.5D.6.5
2、(4分)如图,已知四边形ABCD是平行四边形,要使它成为菱形,那么需要添加的条件可以是( )
A.AC=BD B.AB=AC C.∠ABC=90°D.AC⊥BD
3、(4分)为了解游客对恭王府、北京大观园、北京动物园和景山公园四个旅游景区的满意率情况,某班实践活动小组的同学给出了以下几种调查方案:方案一:在多家旅游公司随机调查400名导游;方案二:在恭王府景区随机调查400名游客;方案三:在北京动物园景区随机调查400名游客;方案四:在上述四个景区各随机调查400名游客.在这四种调查方案中,最合理的是( )
A.方案一B.方案二C.方案三D.方案四
4、(4分)如图,△ABC中,CD⊥AB于D,且E是AC的中点.若AD=6,DE=5,则CD的长等于( )
A.7B.8C.9D.10
5、(4分)把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是( )
A.a=2,b=3B.a=-2,b=-3
C.a=-2,b=3D.a=2,b=-3
6、(4分)如图,在六边形中,,分别平分,则的度数为( )
A.B.C.D.
7、(4分)估算在哪两个整数之间( )
A.0和1B.1和2C.2和3D.3和4
8、(4分)如图,四边形ABCD的对角线互相平分,要使它变为菱形,需要添加的条件是( )
A.AB=CDB.AD=BCC.AB=BCD.AC=BD
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)直线与坐标轴围成的图形的面积为________.
10、(4分)如图,梯形中,,点分别是的中点. 已知两底之差是6,两腰之和是12,则的周长是____.
11、(4分)如图,矩形ABCD的对角线AC、BD相交于点O,∠AOB=120°,CE//BD,DE//AC,若AD=5,则四边形CODE的周长______.
12、(4分)要使二次根式有意义,则的取值范围是________.
13、(4分)已知甲乙两车分别从A、B两地出发,相向匀速行驶,已知乙车先出发,1小时后甲车再出发.一段时间后,甲乙两车在休息站C地相遇:到达C地后,乙车不休息继续按原速前往A地,甲车休息半小时后再按原速前往B地,甲车到达B地停止运动;乙车到A地后立刻原速返回B地,已知两车间的距离y(km)随乙车运动的时间x(h)变化如图,则当甲车到达B地时,乙车距离B地的距离为_____(km).
三、解答题(本大题共5个小题,共48分)
14、(12分)阅读材料:换元法是数学学习中最常用到的一种思想方法,对结构较复杂的数字和多项式,若把其中某些部分看成一个整体,用新字母代替(即换元),则能使复杂的问题简单化,明朗化.换元法在较大数的计算,简化多项式的结构等方面都有独到的作用.
例: 设则
上式
应用以上材料,解决下列问题:
(1)计算:
(2)化简:
15、(8分)如图,点A.F、C.D在同一直线上,点B和点E分别在直线AD的两侧,且
AB=DE,∠A=∠D,AF=DC.
(1)求证:四边形BCEF是平行四边形,
(2)若∠ABC=90°,AB=4,BC=3,当AF为何值时,四边形BCEF是菱形.
16、(8分)如下4个图中,不同的矩形ABCD,若把D点沿AE对折,使D点与BC上的F点重合;
(1)图①中,若DE︰EC=2︰1,求证:△ABF∽△AFE∽△FCE;并计算BF︰FC;
(2)图②中若DE︰EC=3︰1,计算BF︰FC= ;图③中若DE︰EC=4︰1,计算BF︰FC= ;
(3)图④中若DE︰EC=︰1,猜想BF︰FC= ;并证明你的结论
17、(10分)如图,抛物线与轴交于两点和与轴交于点动点沿的边以每秒个单位长度的速度由起点向终点运动,过点作轴的垂线,交的另一边于点将沿折叠,使点落在点处,设点的运动时间为秒.
(1)求抛物线的解析式;
(2)N为抛物线上的点(点不与点重合)且满足直接写出点的坐标;
(3)是否存在某一时刻,使的面积最大,若存在,求出的值和最大面积;若不存在,请说明理由.
18、(10分)《九章算术》“勾股”章有一题:“今有二人同所立,甲行率七,乙行率三.乙东行,甲南行十步而斜东北与乙会.问甲乙行各几何”.大意是说,已知甲、乙二人同时从同一地
点出发,甲的速度为7,乙的速度为1.乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.那么相遇时,甲、乙各走了多远?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)比较大小:2____3(填“ >、<、或 = ”).
20、(4分)如图,在每个小正方形的边长为1的网格中,A,B,C,D均为格点.
(Ⅰ)∠ABC的大小为_____(度);
(Ⅱ)在直线AB上存在一个点E,使得点E满足∠AEC=45°,请你在给定的网格中,利用不带刻度的直尺作出∠AEC.
21、(4分)如图,将边长为的正方形折叠,使点落在边的中点处,点落在处,折痕为,则线段的长为____.
22、(4分)已知三角形的三条中位线的长分别为5cm、6cm、10cm,则这个三角形的周长是_____cm.
23、(4分)如图,在菱形ABCD中,∠C=60º,E、F分别是AB、AD的中点,若EF=5,则菱形ABCD的周长为____________.
二、解答题(本大题共3个小题,共30分)
24、(8分)某中学为了了解八年级学生的业余爱好,抽查了部分学生,并制如下表格和条形统计图:
请根据图完成下面题目:
(1)抽查人数为_____人,a=_____.
(2)请补全条形统计图;
(3)若该校八年级有800人,请你估算该校八年级业余爱好音乐的学生约有多少人?
25、(10分)(1)发现规律:
特例1:===;
特例2:===;
特例3:=4;
特例4:______(填写一个符合上述运算特征的例子);
(2)归纳猜想:
如果n为正整数,用含n的式子表示上述的运算规律为:______;
(3)证明猜想:
(4)应用规律:
①化简:×=______;
②若=19,(m,n均为正整数),则m+n的值为______.
26、(12分)已知方程组,当m为何值时,x>y?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据题意首先利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半进行解答即可.
【详解】
解:由勾股定理得,斜边,
所以斜边上的中线长.
故选:D.
本题考查直角三角形斜边上的中线等于斜边的一半的性质以及勾股定理,熟记相关性质是解题的关键.
2、D
【解析】
根据菱形的判定方法有四种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形,④对角线平分对角,作出选择即可.
【详解】
A.∵四边形ABCD是平行四边形,AC=BD,∴四边形ABCD是矩形,不是菱形,故本选项错误;
B.∵四边形ABCD是平行四边形,AB=AC≠BC,∴平行四边形ABCD不是菱形,故本选项错误;
C.∵四边形ABCD是平行四边形,∠ABC=90°,∴四边形ABCD是矩形,不能推出平行四边形ABCD是菱形,故本选项错误;
D.∵四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形,故本选项正确.
故选D.
本题考查了平行四边形的性质,菱形的判定方法;注意:菱形的判定定理有:①有一组邻边相等的平行四边形是菱形,②四条边都相等的四边形是菱形,③对角线互相垂直的平行四边形是菱形.
3、D
【解析】
根据调查收集数据应注重代表性以及全面性,进而得出符合题意的答案.
【详解】
解:为了解游客对恭王府、北京大观园、北京动物园和景山公园四个旅游景区的满意率情况,应在上述四个景区各随机调查400名游客.
故选:D.
此题主要考查了调查收集数据的过程与方法,正确掌握数据收集代表性是解题关键.
4、B
【解析】
先利用中点的定义求得AC的长,然后运用勾股定理即可快速作答.
【详解】
解:如图,∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,
∴DE=AC=5,
∴AC=1.
在直角△ACD中,∠ADC=90°,AD=6,AC=1,则根据勾股定理,得
CD==8
故答案为B;
考查勾股定理时,条件常常不是完全具备,需要挖掘隐含条件,才能正确的使用勾股定理.本题还考查了直角三角形斜边上的中线长度等于斜边的一半.
5、B
【解析】
分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.
详解:(x+1)(x-3)
=x2-3x+x-3
=x2-2x-3
所以a=2,b=-3,
故选B.
点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.
6、A
【解析】
由多边形内角和定理求出∠A+∠B+∠E+∠F+∠CDE+∠BCD=720°①,由角平分线定义得出∠BCP=∠DCP,∠CDP=∠PDE,根据三角形内角和定理得出∠P+∠PCD+∠PDE=180°,得出2∠P+∠BCD+∠CDE=360°②,由①和②即可求出结果.
【详解】
在六边形 A BCDEF中,
∠A+∠B+∠E+∠F+∠CDE+∠BCD=(6-2)×180°=720°①,
CP、DP分別平分∠BCD、∠CDE,
∴∠BCP=∠DCP,∠CDP=∠PDE,
∠P+∠PCD+∠PDE=180°,
∴2(∠P+∠PCD+∠PDE)=360°,
即2∠P+∠BCD+∠CDE=360°②,
①-②得:∠A+∠B+∠E+∠F-2∠P=360°,
即α-2∠P=360°,
∴∠P=α-180°,
故选:A.
本题考查了多边形内角和定理、角平分线定义以及三角形内角和定理;熟记多边形内角和定理和三角形内角和定理是解题关键.
7、C
【解析】
原式化简后,估算即可确定出范围.
【详解】
解:原式=﹣+1=+1,
∵,
∴,即,
则2﹣+1在2和3两个整数之间,
故选:C.
本题考查了无理数的估算,能够正确化简,并熟知是解题的关键.
8、C
【解析】
要使四边形ABCD是菱形,根据题中已知条件四边形ABCD的对角线互相平分可以运用方法“对角线互相垂直平分的四边形是菱形”或“邻边相等的平行四边形是菱形”,添加AC⊥BD或AB=BC.
【详解】
∵四边形ABCD的对角线互相平分,
∴四边形ABCD是平行四边形,
∴要使四边形ABCD是菱形,需添加AC⊥BD或AB=BC,
故选:C.
考查了菱形的判定方法,关键是熟练把握菱形的判定方法①定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);②四条边都相等的四边形是菱形;③对角线互相垂直平分的平行四边形是菱形.具体选择哪种方法需要根据已知条件来确定.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
由一次函数的解析式求得与坐标轴的交点,然后利用三角形的面积公式即可得出结论.
【详解】
由一次函数y=x+4可知:一次函数与x轴的交点为(-4,0),与y轴的交点为(0,4),
∴其图象与两坐标轴围成的图形面积=×4×4=1.
故答案为:1.
本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
10、1.
【解析】
延长EF交BC于点H,可知EF,FH,FG、EG分别为△BDC、△ABC、△BDC和△ACD的中位线,由三角形中位线定理结合条件可求得EF+FG+EG,可求得答案.
【详解】
连接AE,并延长交CD于K,
∵AB∥CD,
∴∠BAE=∠DKE,∠ABD=∠EDK,
∵点E、F、G分别是BD、AC、DC的中点.
∴BE=DE,
在△AEB和△KED中,
,
∴△AEB≌△KED(AAS),
∴DK=AB,AE=EK,EF为△ACK的中位线,
∴EF=CK=(DC-DK)=(DC-AB),
∵EG为△BCD的中位线,∴EG=BC,
又FG为△ACD的中位线,∴FG=AD,
∴EG+GF=(AD+BC),
∵两腰和是12,即AD+BC=12,两底差是6,即DC-AB=6,
∴EG+GF=6,FE=3,
∴△EFG的周长是6+3=1.
故答案为:1.
此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.
11、1
【解析】
通过矩形的性质可得,再根据∠AOB=11°,可证△AOD是等边三角形,即可求出OD的长度,再通过证明四边形CODE是菱形,即可求解四边形CODE的周长.
【详解】
∵四边形ABCD是矩形
∴
∵∠AOB=11°
∴
∴△AOD是等边三角形
∵
∴
∴
∵CE//BD,DE//AC
∴四边形CODE是平行四边形
∵
∴四边形CODE是菱形
∴
∴四边形CODE的周长
故答案为:1.
本题考查了四边形的周长问题,掌握矩形的性质、等边三角形的性质、菱形的性质以及判定定理是解题的关键.
12、x≥1
【解析】
根据二次根式被开方数为非负数进行求解.
【详解】
由题意知,,
解得,x≥1,
故答案为:x≥1.
本题考查二次根式有意义的条件,二次根式中的被开方数是非负数.
13、1
【解析】
先从图象中获取信息得知A,B两地之间的距离及乙的行驶时间求出乙车的速度,然后再根据两车的相遇时间求出甲的速度,然后求出甲车行完全程的时间,就可以算出此时乙车的行驶时间,用总时间减去甲行完全程时的时间求出乙车剩下的时间,再乘以乙车的速度即可求出路程.
【详解】
由图象可知,A、B两地相距990千米,而乙来回用时22小时,因此乙车的速度为:
990÷(22÷2)=90千米/小时,
甲乙两车在C地相遇后,甲休息0.5小时,乙继续走,所以乙车出发7小时后两车相遇,因此甲车速度为:
(990﹣90×7)÷(7﹣1)=60千米/小时,
甲车行完全程的时间为:990÷60=16.5小时,此时乙车已经行驶16.5+0.5+1=18小时,
因此乙车距B地还剩22﹣18=4小时的路程,
所以当甲车到达B地时,乙车距离B地的距离为90×4=1千米,
故答案为:1.
本题主要考查一次函数的应用,能够从图象中获取有用信息并掌握行程问题的解法是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)0;(2)-1.
【解析】
(1)设则,则原式,化简求解即可;
(2)设,,则,原式=,化简后代入即可.
【详解】
解:(1)设则,则:
原式
=
;
(2)设,,则,
原式=
=
=
=
=
=
=.
本题考查了换元法的思想和解题思路,准确的找出能把式子化繁为简的整体(换元)部分是解题的关键.
15、(1)见解析
(2)当AF=时,四边形BCEF是菱形.
【解析】
(1)由AB=DE,∠A=∠D,AF=DC,根据SAS得△ABC≌DEF,即可得BC=EF,且BC∥EF,即可判定四边形BCEF是平行四边形.
(2)由四边形BCEF是平行四边形,可得当BE⊥CF时,四边形BCEF是菱形,所以连接BE,交CF与点G,证得△ABC∽△BGC,由相似三角形的对应边成比例,即可求得AF的值.
【详解】
(1)证明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF.
∵在△ABC和△DEF中,AC=DF,∠A=∠D,AB=DE,
∴△ABC≌DEF(SAS).∴BC=EF,∠ACB=∠DFE,∴BC∥EF.
∴四边形BCEF是平行四边形.
(2)解:连接BE,交CF与点G,
∵四边形BCEF是平行四边形,
∴当BE⊥CF时,四边形BCEF是菱形.
∵∠ABC=90°,AB=4,BC=3,
∴AC=.
∵∠BGC=∠ABC=90°,∠ACB=∠BCG,∴△ABC∽△BGC.
∴,即.∴.
∵FG=CG,∴FC=2CG=,
∴AF=AC﹣FC=5﹣.
∴当AF=时,四边形BCEF是菱形.
16、(1)根据折叠的性质及矩形的性质可证得△ABF∽△AFE∽△FCE,再根据相似三角形的性质求解即可,1:1;(2)1:2,1:3;(3)1︰(n-1)
【解析】
试题分析:根据折叠的性质及矩形的性质可证得△ABF∽△AFE∽△FCE,再根据相似三角形的性质求解即可.
解:(1)∵∠BAF+∠AFB=90°,∠CFE+∠AFB=90°
∴∠BAF=∠CFE
∵∠B=∠C=90°
∴△ABF∽△FCE
∴BF︰CE=AB︰FC=AF︰FE
∴AB︰AF=BF︰FE
∵∠B=∠AFE=90°
∴△ABF∽△AFE
∴△ABF∽△AFE∽△FCE
∵DE︰EC=2︰1
∴FE︰EC=2︰1
∴BF︰FC=1︰1
(2)若DE︰EC=3︰1,则BF︰FC=1︰2;若DE︰EC=4︰1,计算BF︰FC=1︰3;
(3)∵DE︰EC=︰1
∴FE︰EC=︰1
∴BF︰FC=1︰(n-1).
考点:相似三角形的综合题
点评:相似三角形的综合题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.
17、(1);(2)(-5,1)或(,-1)或(,-1);(1)存在,时,有最大值为.
【解析】
(1)把A(-1,0),B(1,0)代入y=ax2+bx+1,得到关于a、b的二元一次方程组,解方程组即可得到结论;
(2)由抛物线解析式求出C(0,1),根据同底等高的两个三角形面积相等,可知N点纵坐标的绝对值等于1,将y=±1分别代入二次函数解析式,求出x的值,进而得到N点的坐标;
(1)由于点D在y轴的右侧时,过点作轴的垂线,无法与 的另一边相交,所以点D在y轴左侧,根据题意求出直线AC的解析式及E,D,F的坐标,然后根据三角形面积求得与t的函数关系式,然后利用二次函数的性质求最值即可.
【详解】
解:(1)把A(-1,0),B(1,0)代入y=ax2+bx+1中,得
,解得 ,
∴抛物线的解析式为:,
(2)∵抛物线与y轴交于点C,
∴C(0,1).
∵N为抛物线上的点(点不与点重合)且S△NAB=S△ABC,
∴设N(x,y),则|y|=1.
把y=1代入,得,解得x=0或-5,
x=0时N与C点重合,舍去,
∴N(-5,1);
把y=-1代入,得,解得
∴N(,-1)或(,-1).
综上所述,所求N点的坐标为(-5,1)或(,-1)或(,-1);
(1)存在.
由题意可知,∵过点作轴的垂线,交的另一边于点
∴点D必在y轴的左侧.
∵AD=2t,
∴由折叠性质可知DF=AD=2t,
∴OF=1-4t,
∴D(2t-1,0),
∵设直线AC的解析式为:,将A(-1,0)和C(0,1)代入解析式得 ,解得
∴直线AC的解析式为:
∴E(2t-1,2t).
∴
∵-4<0
时,有最大值为.
本题是二次函数综合题,其中涉及到利用待定系数法求直线、抛物线的解析式,二次函数的性质,三角形的面积等知识.利用数形结合是解题的关键.
18、甲走了24.5步,乙走了10.5步
【解析】
试题分析:设经x秒二人在B处相遇,然后利用勾股定理列出方程即可求得甲乙两人走的步数.
试题解析:设经x秒二人在B处相遇,这时乙共行AB=1x,
甲共行AC+BC=7x,
∵AC=10,
∴BC=7x﹣10,
又∵∠A=90°,
∴BC2=AC2+AB2,
∴(7x﹣10)2=102+(1x)2,
∴x=0(舍去)或x=1.5,
∴AB=1x=10.5,
AC+BC=7x=24.5,
答:甲走了24.5步,乙走了10.5步.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、<
【解析】
试题分析:将两式进行平方可得:=12,=18,因为12<18,则<.
20、90.
【解析】
(Ⅰ)如图,根据△ABM是等腰直角三角形,即可解决问题;
(Ⅱ)构造正方形BCDE即可.
【详解】
(Ⅰ)如图,∵△ABM是等腰直角三角形,
∴∠ABM=90°
(Ⅱ)构造正方形BCDE,∠AEC即为所求;
故答案为90
本题考查作图-应用与设计,解题的关键是寻找特殊三角形或特殊四边形解决问题
21、
【解析】
根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8-x,CE=4,根据勾股定理就可以列出方程,从而解出CN的长.
【详解】
设CN=x,则DN=8-x,由折叠的性质知EN=DN=8-x,
而EC=BC=4,在Rt△ECN中,由勾股定理可知,即
整理得16x=48,所以x=1.
故答案为:1.
本题考查翻折变换、正方形的性质、勾股定理等知识,解题的关键是设未知数利用勾股定理列出方程解决问题,属于中考常考题型.
22、1
【解析】
根据三角形的中位线定理解答即可.
【详解】
∵三角形的三条中位线的长分别是5cm、6cm、10cm,
∴三角形的三条边分别是10cm、12cm、20cm.
∴这个三角形的周长=10+12+20=1cm.
故答案是:1.
本题考查了三角形的中位线定理,熟知三角形的中位线定理是解决问题的关键.
23、1
【解析】
先根据菱形的性质可得,再根据线段中点的定义可得,然后根据等边三角形的判定与性质可得,从而可得,最后根据菱形的周长公式即可得.
【详解】
四边形ABCD是菱形,
点E、F分别是AB、AD的中点
又
是等边三角形
则菱形ABCD的周长为
故答案为:1.
本题考查了菱形的性质、等边三角形的判定与性质等知识点,熟练掌握菱形的性质是解题关键.
二、解答题(本大题共3个小题,共30分)
24、(1)100;0.3;(2)补图见解析;(3)280人.
【解析】
(1)根据爱好体育的有30人,频率为0.25可求出调查的人数,进而可得出a、b值;(2)根据b值补全条形统计图即可;(3)用爱好音乐的学生所占百分比乘以八年级的人数即可得答案.
【详解】
(1)25÷0.25=100(人),
∴a=30÷100=0.3,
故答案为:100;0.3
(2)b=100×0.35=35(人),
补全条形统计图如图:
(3)800×0.35=280(人)
答:该校八年级业余爱好音乐的学生约有280人.
本题考查读条形统计图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
25、(1);(2);(3)见解析;(4)①2121;②m+n=2
【解析】
(1)根据题目中的例子可以写出例4;
(2)根据(1)中特例,可以写出相应的猜想;
(3)根据(2)中的猜想,对等号左边的式子化简,即可得到等号右边的式子,从而可以解答本题;
(4)①②根据(2)中的规律即可求解.
【详解】
解:(1),
故答案为:;
(2),
故答案为:;
(3)证明:∵左边=,
∵n为正整数,
∴n+1>1.
∴左边=|n+1(n+1),
又∵右边=(n+1),
∴左边=右边.
即;
(4)①×=2121×=2121;
故答案为:2121;
②∵=19,
∴m+1=19,解得m=18,
∴n=m+2=21,
∴m+n=2.
本题考查规律型:数字的变化类,二次根式的混合运算,解答本题的关键是明确题意,根据已知等式总结一般规律并应用规律解题.
26、.
【解析】
解含有参数m的二元一次方程组,得到关于m的x、y的值,再根据x>y的关系解不等式求出m的取值范围即可.
【详解】
解:,
②×2﹣①得:x=m﹣3③,
将③代入②得:y=﹣m+5,
∴得,
∵x>y,
∴m﹣3>﹣m+5,
解得m>4,
∴当m>4时,x>y.
题号
一
二
三
四
五
总分
得分
频数
频率
体育
25
0.25
美术
30
a
音乐
b
0.35
其他
10
0.1
2025届山东省潍坊市寿光市数学九上开学学业质量监测模拟试题【含答案】: 这是一份2025届山东省潍坊市寿光市数学九上开学学业质量监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届山东省潍坊市青州市益都中学数学九上开学经典模拟试题【含答案】: 这是一份2025届山东省潍坊市青州市益都中学数学九上开学经典模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届山东省昌乐县九上数学开学综合测试试题【含答案】: 这是一份2025届山东省昌乐县九上数学开学综合测试试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。