|试卷下载
搜索
    上传资料 赚现金
    2024-2025学年山东省济南实验中学九上数学开学综合测试试题【含答案】
    立即下载
    加入资料篮
    2024-2025学年山东省济南实验中学九上数学开学综合测试试题【含答案】01
    2024-2025学年山东省济南实验中学九上数学开学综合测试试题【含答案】02
    2024-2025学年山东省济南实验中学九上数学开学综合测试试题【含答案】03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年山东省济南实验中学九上数学开学综合测试试题【含答案】

    展开
    这是一份2024-2025学年山东省济南实验中学九上数学开学综合测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在△ABC中,∠ACB=90°,AC=8,AB=10,DE垂直平分AC交AB于点E,则DE的长为( )
    A.6B.5C.4D.3
    2、(4分)若点A(3,y1),B(﹣2,y2)都在直线y=﹣x+n上,则y1与y2的大小关系是( )
    A.y1<y2B.y1>y2
    C.y1=y2D.以上都有可能
    3、(4分)把一些笔记本分给几个学生,如果每人分3本,那么余8本,如果每人分5本,则最后一个人分到的本数不足3本,则共有学生( )人.
    A.4 B.5 C.6 D.5或6
    4、(4分)如图,在▱ABCD中,对角线AC、BD相交于点O,下列哪个条件不能判定▱ABCD是矩形的是( )
    A.AC=BDB.OA=OBC.∠ABC=90°D.AB=AD
    5、(4分)如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1、S2的大小关系是
    A.S1>S2B.S1=S2C.S1<S2D.3S1=2S2
    6、(4分)一元二次方程的根是( )
    A.x  0B.x  1C.x  0, x  1D.无实根
    7、(4分)如图所示,四边形OABC是矩形,△ADE是等腰直角三角形,∠ADE=90°,点A,D在x轴的正半轴上,点C在y轴的正半轴上,点B、E在反比例函数y=(x>0)的图象上.△ADE的面积为,且AB=DE,则k值为( )
    A.18B.C.D.16
    8、(4分)若点P在一次函数的图像上,则点P一定不在( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,过点N(0,-1)的直线y=kx+b与图中的四边形ABCD有不少于两个交点,其中A(2,3)、B(1,1)、C(4,1)、D(4,3),则k的取值范围____________
    10、(4分)将函数的图象向上平移3个单位长度,得到的函数图象的解析式为______.
    11、(4分)如图,在平面直角坐标系中,点A为,点C是第一象限上一点,以OA,OC为邻边作▱OABC,反比例函数的图象经过点C和AB的中点D,反比例函数图象经过点B,则的值为______.
    12、(4分)在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AB=5,则BC=_____.
    13、(4分)如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点处,当△为直角三角形时,BE的长为 .
    三、解答题(本大题共5个小题,共48分)
    14、(12分)在正方形ABCD中,过点A引射线AH,交边CD于点H(点H与点D不重合),通过翻折,使点B落在射线AH上的点G处,折痕AE交BC于点E,延长EG 交CD于点F.如图①,当点H与点C重合时,易证得FG=FD(不要求证明);如图②,当点H为边CD上任意一点时,求证:FG=FD.
    (应用)在图②中,已知AB=5,BE=3,则FD= ,△EFC的面积为 .(直接写结果)
    15、(8分)骑自行车旅行越来越受到人们的喜爱,顺风车行经营的型车2017年7月份销售额为万元,今年经过改造升级后,型车每辆的销售价比去年增加元,若今年7月份与去年7月份卖出的型车数量相同,则今年7月份型车销售总额将比去年7月份销售总额增加.求今年7月份顺风车行型车每辆的销售价格.
    16、(8分)先化简再求值:,其中a=-2。
    17、(10分)甲、乙两人相约登山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:
    (1)图中的t1= 分;
    (2)若乙提速后,乙登山的速度是甲登山的速度的3倍,
    ①则甲登山的速度是 米/分,图中的t2= 分;
    ②请求出乙登山过程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式.
    18、(10分)当为何值时,分式的值比分式的值大2?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若关于x的不等式组的解集为﹣<x<﹣6,则m的值是_____.
    20、(4分)如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=2,BD=3,则AC的长为_____.
    21、(4分)如图,点D是直线外一点,在上取两点A,B,连接AD,分别以点B,D为圆心,AD,AB的长为半径画弧,两弧交于点C,连接CD,BC,则四边形ABCD是平行四边形,理由是:_________________________
    .
    22、(4分)甲、乙两名同学的5次数学成绩情况统计结果如下表:
    根据上表,甲、乙两人成绩发挥较为稳定的是______填:甲或乙
    23、(4分)若关于x的一元二次方程有两个不相等的实数根,则非正整数k的值是______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知两地相距,甲、乙两人沿同一公路从 地出发到地,甲骑摩托车,乙骑自行车,如图中分别表示甲、乙离开地的距离 与时间 的函数关系的图象,结合图象解答下列问题.
    (1)甲比乙晚出发___小时,乙的速度是___ ;甲的速度是___.
    (2)若甲到达地后,原地休息0.5小时,从地以原来的速度和路线返回地,求甲、乙两人第二次相遇时距离地多少千米?并画出函数关系的图象.
    25、(10分)如图,四边形ABCD中, BA=BC, DA=DC,我们把这种两组邻边分别相等的四边形叫做“筝形”, 其对角线AC、BD交于点M,请你猜想关于筝形的对角线的一条性质,并加以证明.
    猜想:
    证明:
    26、(12分)化简:;
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    试题分析:已知,在△ABC中,∠ACB=90°,AC=8,AB=10,根据勾股定理可得BC=6,又因DE垂直平分AC,∠ACB=90°,可得DE为△ABC的中位线,根据三角形的中位线定理可得DE=BC=3,故答案选D.
    考点:勾股定理;三角形的中位线定理.
    2、A
    【解析】
    结合题意点A(3,y1),B(﹣1,y1)都在直线y=﹣x+n上,利用一次函数的增减性即可解决问题.
    【详解】
    ∵直线y=﹣x+n,
    ﹣<0,
    ∴y随x的增大而减小,
    ∵3>﹣1,
    ∴y1<y1.
    故选:A.
    本题考查一次函数图象上的点的特征,解题的关键是学会利用一次函数的增减性解决问题,属于中考常考题型.
    3、C
    【解析】
    根据每人分3本,那么余8本,如果前面的每个学生分1本,那么最后一人就分不到3本,得出3x+8≥1(x-1),且1(x-1)+3>3x+8,分别求出即可.
    【详解】
    假设共有学生x人,根据题意得出:
    1(x-1)+3>3x+8≥1(x-1),
    解得:1<x≤6.1.
    故选:C.
    本题考查了不等式组的应用,解题关键是根据题意找出不等关系得出不等式组.
    4、D
    【解析】
    根据平行四边形的性质,矩形的判定方法即可一一判断即可.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∵AC=BD,
    ∴ABCD是矩形,故A正确;
    ∵四边形ABCD是平行四边形,
    ∴AO=OC,BO=OD,
    ∵OA=OB,
    ∴AC=BD,
    ∴ABCD是矩形,故B正确;
    ∵四边形ABCD是平行四边形,
    ∵∠ABC=90°,
    ∴ABCD是矩形,故C正确;
    ∵四边形ABCD 是平行四边形,
    ∵AB=AD,
    ∴ABCD是菱形,故D错误.
    故选:D.
    本题考查了矩形的判定,平行四边形的性质,熟练掌握矩形的判定定理是解题的关键.
    5、B
    【解析】
    由于矩形ABCD的面积等于2个△ABC的面积,而△ABC的面积又等于矩形AEFC的一半,所以可得两个矩形的面积关系.
    【详解】
    ∵矩形ABCD的面积S=2S△ABC, S△ABC=S矩形AEFC,
    ∴S1=S2
    故选B
    6、C
    【解析】
    先移项得到,再把方程左边分解因式得到,原方程转化为或,然后解两个一元一次方程即可.
    【详解】


    或,
    ,.
    故选:.
    本题考查了解一元二次方程-因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解.
    7、B
    【解析】
    设B(m,5),则E(m+3,3),因为B、E在y=上,则有5m=3m+9=k,由此即可解决问题;
    【详解】
    解:∵△ADE是等腰直角三角形,面积为,
    ∴AD=DE=3,
    ∵AB=DE,
    ∴AB=5,设B(m,5),则E(m+3,3),
    ∵B、E在y=上,
    则有5m=3m+9=k
    ∴m=,
    ∴k=5m=.
    故选B.
    本题考查反比例函数系数k的几何意义,等腰直角三角形的性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.
    8、C
    【解析】
    根据一次函数的性质进行判定即可.
    【详解】
    一次函数y=-x+4中k=-1<0,b>0,
    所以一次函数y=-x+4的图象经过二、一、四象限,
    又点P在一次函数y=-x+4的图象上,
    所以点P一定不在第三象限,
    故选C.
    本题考查了一次函数的图象和性质,熟练掌握是解题的关键.
    y=kx+b:当 k>0,b>0时,函数的图象经过一,二,三象限;当 k>0,b<0时,函数的图象经过一,三,四象限;当 k<0,b>0时,函数的图象经过一,二,四象限;当 k<0,b<0时,函数的图象经过二,三,四象限.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、<k≤2.
    【解析】
    直线y=kx+b过点N(0,-2),则b=-2,y=kx-2.当直线y=kx-2的图象过A点时,求得k的值;当直线y=kx-2的图象过B点时,求得k的值;当直线y=kx-2的图象过C点时,求得k的值,最后判断k的取值范围.
    【详解】
    ∵直线y=kx+b过点N(0,-2),
    ∴b=-2,
    ∴y=kx-2.
    当直线y=kx-2的图象过A点(2,3)时,
    2k-2=3,k=2;
    当直线y=kx-2的图象过B点(2,2)时,
    k-2=2,k=2;
    当直线y=kx-2的图象过C点(4,2)时,
    4k-2=2,k=,
    ∴k的取值范围是<k≤2.
    故答案为<k≤2.
    本题主要考查了运用待定系数法求一次函数解析式,解题时注意:求正比例函数y=kx,只要一对x,y的值;而求一次函数y=kx+b,则需要两组x,y的值.
    10、
    【解析】
    根据一次函数的图像平移的特点即可求解.
    【详解】
    函数的图象向上平移3个单位长度,得到的函数图象的解析式为+3,
    ∴函数为
    此题主要考查一次函数的性质,解题的关键是熟知一次函数平移的特点.
    11、
    【解析】
    过C作CE⊥x轴于E,过D作DF⊥x轴于F,易得△COE∽△DAF,设C(a,b),则利用相似三角形的性质可得C(4,b),B(10,b),进而得到.
    【详解】
    如图,过C作CE⊥x轴于E,过D作DF⊥x轴于F,则∠OEC=∠AFD=90°,
    又,

    ∽,
    又是AB的中点,,

    设,则,,
    ,,

    反比例函数的图象经过点C和AB的中点D,

    解得,

    又,


    故答案为.
    本题考查了反比例函数图象上点的坐标特征以及平行四边形的性质,解题的关键是掌握:反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
    12、5;
    【解析】
    根据矩形性质得出AC=2AO,BD=2BO,AC=BD,推出AO=OB,得出等边三角形AOB,利用勾股定理即可得出答案.
    【详解】
    ∵四边形ABCD是矩形,
    ∴AC=BD,AC=2AO,BD=2BO,∠ABC=90°,
    ∴AO=OB,
    ∵∠AOB=60°,
    ∴△AOB是等边三角形,
    ∴AO=AB=5,
    ∴AC=2 AO=10,
    在Rt△ABC中,由勾股定理得,
    BC=.
    故答案为:5.
    本题考查了矩形的性质及勾股定理.根据矩形的性质及∠AOB=60°得出△AOB是等边三角形是解题的关键.
    13、1或.
    【解析】
    当△CEB′为直角三角形时,有两种情况:
    ①当点B′落在矩形内部时,如答图1所示.
    连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=1,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.
    ②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.
    【详解】
    当△CEB′为直角三角形时,有两种情况:
    ①当点B′落在矩形内部时,如答图1所示.
    连结AC,
    在Rt△ABC中,AB=1,BC=4,
    ∴AC==5,
    ∵∠B沿AE折叠,使点B落在点B′处,
    ∴∠AB′E=∠B=90°,
    当△CEB′为直角三角形时,只能得到∠EB′C=90°,
    ∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,
    ∴EB=EB′,AB=AB′=1,
    ∴CB′=5-1=2,
    设BE=x,则EB′=x,CE=4-x,
    在Rt△CEB′中,
    ∵EB′2+CB′2=CE2,
    ∴x2+22=(4-x)2,解得,
    ∴BE=;
    ②当点B′落在AD边上时,如答图2所示.
    此时ABEB′为正方形,∴BE=AB=1.
    综上所述,BE的长为或1.
    故答案为:或1.
    三、解答题(本大题共5个小题,共48分)
    14、(1)证明见解析;(2)应用:;
    【解析】
    试题分析:由折叠的性质可得AB=AG=AD,∠AGF=∠AGE=∠B=∠D=90°,再结合AF为△AGF和△ADF的公共边,从而证明△AGF≌△ADF,从而得出结论.
    [应用]设FG=x,则FC=5-x,FE=3+x,在Rt△ECF中利用勾股定理可求出x的值,进而可得出答案.
    试题解析:(1)由翻折得AB=AG,∠AGE=∠ABE=90°
    ∴∠AGF=90°
    由正方形ABCD得 AB=AD
    ∴AG=AD
    在Rt△AGF和Rt△ADF中,

    ∴Rt△AGF ≌ Rt△ADF
    ∴FG=FD
    (2)[应用]设FG=x,则FC=5-x,FE=3+x,
    在Rt△ECF中,EF2=FC2+EC2,即(3+x)2=(5-x)2+22,
    解得x=.
    即FG的长为.
    由(1)得:FD=FG=,FC=5-=,BC=AB=5,BE=3
    ∴EC=5-3=2
    ∴ΔEFC的面积=
    15、2000
    【解析】
    设去年A型车每辆x元,那么今年每辆(x+400)元,列出方程即可解决问题.
    【详解】
    解:设去年A型车每辆x元,那么今年每辆(x+400)元,
    根据题意得
    解得x=1600,
    经检验,x=1600是方程的解.
    答:今年A型车每辆2000元.
    本题考查了分式方程的应用,解题的关键是设未知数列出方程解决问题,注意分式方程必须检验.
    16、,3
    【解析】
    可先对括号内,进行化简约分,对括号外除法化乘法,然后对括号内同分母分式加法进行计算,最后进行约分即可得到化简之后的结果,将a=-2代入化简之后的结果进行计算.
    【详解】
    原式=



    当a=-2,原式=3
    本题考查分式的化简求值,对于分式的化简在运算过程中要根据运算法则注意运算顺序,在化简过程中可先分别对分母分子因式分解,再进行约分计算.
    17、 (1)2;(2)①10,20;②.
    【解析】
    (1)根据高度=速度×时间即可算出t1的值;
    (2)①根据“高度=速度×时间”列式计算即可;②运用待定系数法求出线段OA与线段AB的解析式即可.
    【详解】
    (1)t1=30÷15=2
    故答案为:2;
    (2)①甲登山上升的速度是:(300-100)÷20=10(米/分钟),
    故答案为:10,20;t2=(300-100)÷10=20,
    ②当0≤x≤2时,直线过原点,且经过点(2,30),
    ∴y=15x,
    当2<x≤11时,设y=kx+b,直线过点(2,30),(11,300)
    得,
    y与x的数解析式也可以合起来表示为:

    本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系列式计算;(2)根据高度=初始高度+速度×时间找出y关于x的函数关系式.
    18、当时,分式的值比分式的值大2.
    【解析】
    根据题意列出方程,求出方程的解即可得到x的值.
    【详解】
    解:根据题意得:
    方程两边同乘以约去分母,得:
    化简整理,得:
    解得
    经检验:是原方程的根,
    所以,原方程的根是:
    所以,当时,分式的值比分式的值大2.
    此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    先解不等式组得出其解集为,结合可得关于的方程,解之可得答案.
    【详解】
    解不等式,得:,
    解不等式,得:,
    ∵不等式组的解集为,
    ∴,
    解得,
    故答案为:1.
    本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    20、
    【解析】
    作AM⊥BC于E,由角平分线的性质得出,设AC=2x,则BC=3x,由线段垂直平分线得出MN⊥BC,BN=CN=x,得出MN∥AE,得出,NE=x,BE=BN+EN=x,CE=CN−EN=x,再由勾股定理得出方程,解方程即可得出结果.
    【详解】
    解:作AM⊥BC于E,如图所示:
    ∵CD平分∠ACB,
    ∴,
    设AC=2x,则BC=3x,
    ∵MN是BC的垂直平分线,
    ∴MN⊥BC,BN=CN=x,
    ∴MN∥AE,
    ∴,
    ∴NE=x,
    ∴BE=BN+EN=x,CE=CN−EN=x,
    由勾股定理得:AE2=AB2−BE2=AC2−CE2,
    即52−(x)2=(2x)2−(x)2,
    解得:x=,
    ∴AC=2x=;
    故答案为.
    本题考查了线段垂直平分线的性质、角平分线的性质、平行线分线段成比例定理、勾股定理等知识;熟练掌握线段垂直平分线的性质和角平分线的性质,由勾股定理得出方程是解题的关键.
    21、两组对边分别相等的四边形是平行四边形.
    【解析】
    先根据分别以点B,D为圆心,AD,AB的长为半径画弧,两弧交于点C,连接CD,BC,得出AB=DC,AD=BC,根据“两组对边分别相等的四边形是平行四边形”可判断四边形ABCD是平行四边形.
    【详解】
    解:根据尺规作图的作法可得,AB=DC,AD=BC,
    ∴四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形)
    故答案为两组对边分别相等的四边形是平行四边形.
    本题主要考查了平行四边形的判定,解题时注意:两组对边分别相等的四边形是平行四边形.符号语言为:∵AB=DC,AD=BC,∴四边形ABCD是平行四边形.
    22、甲
    【解析】
    根据方差的定义,方差越小数据越稳定.
    【详解】
    ∵S甲2=4,S乙2=16,
    ∴S甲2=4<S乙2=16,
    ∴成绩稳定的是甲,
    故答案为:甲.
    本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    23、-1
    【解析】
    根据判别式的意义及一元二次方程的定义得到,且,然后解不等式即可求得k的范围,从而得出答案.
    【详解】
    解:根据题意知,且,
    解得:且,
    则非正整数k的值是,
    故答案为:.
    本题考查了一元二次方程的根的判别式:当,方程有两个不相等的实数根;当,方程有两个相等的实数根;当,方程没有实数根.
    二、解答题(本大题共3个小题,共30分)
    24、(1)1,15,60;(2)42,画图见解析.
    【解析】
    (1)根据函数图象可以解答本题;
    (2)根据题意画出函数图像,可以求得所在直线函数解析式和所在直线的解析式,从而可以解答本题.
    【详解】
    解:(1)由图象可得,甲比乙晚出发1小时,乙的速度是:30÷2=15km/h,甲的速度是:60÷1=60km/h,
    故答案为1,15,60;
    (2)画图象如图.
    设甲在返回时对应的所在直线函数解析式为:,
    由题意可知,M(2.5,60),N(3.5,0),
    将点M、N代入可得: ,解得
    甲在返回时对应的函数解析式为:
    设所在直线的解析式为:,
    ∴,解得,
    所在直线的解析式为:,
    联立,
    消去得
    答:甲、乙两人第二次相遇时距离地42千米.
    本题考查一次函数的应用,解题的关键是明确题意,正确识图并找出所求问题需要的条件.
    25、筝形有一条对角线平分一组对角,即BD平分∠ABC且BD平分∠ADC;证明见解析
    【解析】
    利用SSS定理证明△ABD≌△CBD,可得∠ABD=∠CBD,∠ADB=∠CDB,从而可写出关于筝形的对角线的一条性质,筝形有一条对角线平分一组对角.
    【详解】
    解:筝形有一条对角线平分一组对角,即BD平分∠ABC且BD平分∠ADC
    证明:∵在△ABD和△CBD中
    BA=BC,DA=DC,BD=BD
    ∴△ABD≌△CBD(SSS)
    ∴∠ABD=∠CBD,∠ADB=∠CDB
    即BD平分∠ABC,且BD平分∠ADC.
    本题考查全等三角形的判定及性质,掌握SSS定理及全等三角形对应角相等是本题的解题关键.
    26、.
    【解析】
    先把二次根式化为最简二次根式,然后合并后进行二次根式的除法运算.
    【详解】
    解:原式

    本题考查了二次根式的混合运算,解题关键在于结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径.
    题号





    总分
    得分
    平均分
    方差
    标准差

    80
    4
    2

    80
    16
    4
    相关试卷

    2024-2025学年山东省临沂市太平中学数学九上开学综合测试试题【含答案】: 这是一份2024-2025学年山东省临沂市太平中学数学九上开学综合测试试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年山东省莒南县九上数学开学综合测试模拟试题【含答案】: 这是一份2024-2025学年山东省莒南县九上数学开学综合测试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年山东省济南市历下区数学九上开学达标检测模拟试题【含答案】: 这是一份2024-2025学年山东省济南市历下区数学九上开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map