2025届内蒙古鄂托克旗乌兰镇中学数学九上开学质量跟踪监视试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)甲、乙两同学同时从学校出发,步行10千米到某博物馆,已知甲每小时比乙多走1千米,结果乙比甲晚20分钟,设乙每小时走x千米,则所列方程正确的是()
A.B.C.D.
2、(4分)一个长为2、宽为1的长方形以下面的四种“姿态”从直线l的左侧水平平移至右侧(下图中的虚线都是水平线).其中,所需平移的距离最短的是( )
A.B.
C.D.
3、(4分)若A(x1,y1)、B(x2,y2)是一次函数y=ax+x-2图像上的不同的两点,记,则当m<0时,a的取值范围是( )
A.a<0B.a>0C.a<-1D.a>-1
4、(4分)在 2008 年的一次抗震救灾大型募捐活动中,文艺工作者积极向灾区捐款.其中 10 人 的捐款分别是:5 万,8 万,10 万,10 万,10 万,20 万,20 万,30 万,50 万,100 万.这组数据的众数和中位数分别是( )
A.10 万,15 万B.10 万,20 万C.20 万,15 万D.20 万,10 万
5、(4分)已知三角形两边长为2和6,要使该三角形为直角三角形,则第三边的长为( )
A.B.C.或D.以上都不对
6、(4分)如图,在▱ABCD中,AC与BD交于点O,下列说法正确的是( )
A.AC=BDB.AC⊥BDC.AO=COD.AB=BC
7、(4分)如图,正方形中,,点在边上,且,将沿对折至,延长交边于点,连接、.则下列结论:①≌;②;③∥;④.其中正确的是( )
A.①②B.①②③C.①②④D.①②③④
8、(4分)关于的一元二次方程有两个相等的实数根,则的值( )
A.2B.3C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,平行四边形中,,,点是对角线上一动点,点是边上一动点,连接、,则的最小值是______.
10、(4分)如图,在平行四边形ABCD中,E为AD边上一点,且AE=AB,若∠BED=160°,则∠D的度数为__________.
11、(4分)元旦期间,张老师开车从汕头到相距150千米的老家探亲,如果油箱里剩余油量(升)与行驶里程 (千米)之间是一次函数关系,其图象如图所示,那么张老师到达老家时,油箱里剩余油量是_______升.
12、(4分)如图,正方形ABCD边长为1,若以正方形的边AB为对角线作第二个正方形AEBO1,再以边BE为对角线作第三个正方形EFBO2……如此作下去,则所作的第n个正方形面积Sn=________
13、(4分)如果一个正整数能表示为两个正整数的平方差,那么称这个正整数为“智慧数”,例如,3=22﹣12,5=32﹣22,7=42﹣32,8=32﹣12…,因此3,5,7,8…都是“智慧数”在正整数中,从1开始,第2018个智慧数是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)新定义:[a,b,c]为二次函数y=ax2+bx+e(a≠0,a,b,c为实数)的“图象数”,如:y=-x2+2x+3的“图象数”为[-1,2,3]
(1)二次函数y=x2-x-1的“图象数”为 .
(2)若图象数”是[m,m+1,m+1]的二次函数的图象与x轴只有一个交点,求m的值.
15、(8分)如图,在6×6的网格中,每个小正方形的边长为1,请按要求画出格点四边形(四个顶点都在格点上的四边形叫格点四边形).
(1)在图1中,画出一个非特殊的平行四边形,使其周长为整数.
(2)在图2中,画出一个特殊平行四边形,使其面积为6且对角线交点在格点上.
注:图1,图2在答题纸上.
16、(8分)为了迎接“六一”国际儿童节,某童装品牌专卖店准备购进甲、乙两种童装,这两种童装的进价和售价如下表:
如果用5000元购进甲种童装的数量与用6000元购进乙种童装的数量相同.
(1)求m的值;
(2)要使购进的甲、乙两种童装共200件的总利润(利润=售价﹣进价)不少于8980元,且甲种童装少于100件,问该专卖店有哪几种进货方案?
17、(10分)化简或求值
(1)(1+)÷
(2)1﹣÷,其中a=﹣,b=1.
18、(10分)一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟进水量和出水量是两个常数.容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.
(1)求y关于x的函数解析式;
(2)每分钟进水、出水各多少升?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在中,,,点在上,.若点是边上异于点的另一个点,且,则的值为______.
20、(4分)如图是一次函数y=kx+b的图象,当y<0时,x的取值范围是_________________.
21、(4分)如图,在直角坐标系中,菱形ABCD的顶点坐标C(-1,0)、B(0,2)、D(n,2),点A在第二象限.直线y=-x+5与x轴、y轴分别交于点N、M.将菱形ABCD沿x轴向右平移m个单位.当点A落在MN上时,则m+n= ________
22、(4分)如图,正方形的定点与正方形的对角线交点重合,正方形和正方形的边长都是,则图中重叠部分的面积是__________.
23、(4分)直线中,y随的减小而_______,图象经过______象限.
二、解答题(本大题共3个小题,共30分)
24、(8分)随着旅游旺季的到来,某旅行社为吸引市民组团取旅游,推出了如下收费标准:
某单位组织员工旅游,共支付给该旅行社费用元,请问该单位这次共有多少员工取旅游?
25、(10分)如图,在ABCD中,E,F分别是AD,BC上的点,且DE=BF,AC⊥EF.
(1)求证:四边形AECF是菱形
(2)若AB=6,BC=10,F为BC中点,求四边形AECF的面积
26、(12分)如图,在平面直角坐标系中,四边形OBCD是边长为4的正方形,B、D分别在轴负半轴、轴正半轴上,点E是轴的一个动点,连接CE,以CE为边,在直线CE的右侧作正方形CEFG.
(1)如图1,当点E与点O重合时,请直接写出点F的坐标为_______,点G的坐标为_______.
(2)如图2,若点E在线段OD上,且OE=1,求正方形CEFG的面积.
(3)当点E在轴上移动时,点F是否在某条直线上运动?如果是,请求出相应直线的表达式;如果不是,请说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据题意,等量关系为乙走的时间-=甲走的时间,根据等量关系式列写方程.
【详解】
20min=h
根据等量关系式,方程为:
故选:D
本题考查列写分式方程,注意题干中的单位不统一,需要先换算单位.
2、C
【解析】
根据平移的性质,利用等腰直角三角形的性质和勾股定理计算出各个图形中平移的距离,然后比较它们的大小即可.
【详解】
A、平移的距离=1+2=3,
B、平移的距离=2+1=3,
C、平移的距离==,
D、平移的距离=2,
故选C.
本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.解决本题的关键是利用等腰直角三角形的性质和勾股定理计算出各个图形中平移的距离.
3、C
【解析】
∵A(x1,y1)、B(x2,y2)是一次函数图象上的不同的两点,,
∴该函数图象是y随x的增大而减小,
∴a+1<0,
解得a<-1,
故选C.
此题考查了一次函数图象上点的坐标特征,要根据函数的增减性进行推理,是一道基础题.
4、A
【解析】
根据众数、中位数的定义进行判断即可
【详解】
解:10万出现次数最多为3次,10万为众数;
从小到大排列的第5,6两个数分别为10万,20万,其平均值即中位数为15万.
故选:A.
本题考查数据的众数与中位数的判断,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个,解题时要细心.
5、C
【解析】
根据勾股定理,分所求第三边为斜边和所求第三边为直角边两种情况计算即可.
【详解】
解:根据勾股定理分两种情况:
(1)当所求第三边为斜边时,第三边长为:;
(1)当所求第三边为直角边时,第三边长为:;
所以第三边长为:或.
故选C .
本题考查了勾股定理,熟练掌握勾股定理是解答本题的关键.在直角三角形中,如果两条直角边分别为a和b,斜边为c,那么a1+b1=c1.也就是说,直角三角形两条直角边的平方和等于斜边的平方.
6、C
【解析】
试题分析:由平行四边形的性质容易得出结论.
解:∵四边形ABCD是平行四边形,
∴AO=CO;
故选C.
7、B
【解析】
分析:根据翻折变换的性质和正方形的性质可证△ABG≌△AFG;在直角△ECG中,根据勾股定理可证BG=GC;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF;由于S△FGC=S△GCE-S△FEC,求得面积比较即可.
详解:①正确.因为AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴△ABG≌△AFG;
②正确.因为:EF=DE=CD=2,设BG=FG=x,则CG=6-x.在直角△ECG中,根据勾股定理,得(6-x)2+42=(x+2)2,解得x=1.所以BG=1=6-1=GC;
③正确.因为CG=BG=GF,所以△FGC是等腰三角形,∠GFC=∠GCF.又∠AGB=∠AGF,∠AGB+∠AGF=180°-∠FGC=∠GFC+∠GCF,
∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;
④错误.过F作FH⊥DC,
∵BC⊥DH,
∴FH∥GC,
∴△EFH∽△EGC,
∴,
EF=DE=2,GF=1,
∴EG=5,
∴△EFH∽△EGC,
∴相似比为:,
∴S△FGC=S△GCE-S△FEC=×1×4-×4×(×1)=.
而S△AFE=S△ADE=,
∴S△FGC≠S△AFE
故答案为①②③.
点睛:本题考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算等知识.此题综合性较强,难度较大,解题的关键是注意数形结合思想与方程思想的应用.
8、A
【解析】
由方程有两个相等的实数根,可得出关于m的一元一次方程,解之即可得出结论.
【详解】
∵方程有两个相等的实数根,
∴,
解得:m=1.
故选:A.
本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
过点B作BF'⊥CD,交AC于点E',则BE+EF的最小值为BF'的长;在Rt△BCF'中,BC=2,∠BCF'=60°,即可求解.
【详解】
过点B作BF'⊥CD,交AC于点E',则BE+EF的最小值为BF'的长;
∵∠BAD=60°,AD=2,
∴在Rt△BCF'中,BC=2,∠BCF'=60°,
∴BF'=.
故答案为.
本题考查最短距离问题;利用垂线段最短将BE+EF的最小值转化为垂线段的长是解题的关键.
10、40°.
【解析】
根据平行四边形的性质得到AD∥BC,求得∠AEB=∠CBE,根据等腰三角形的性质得到∠ABE=∠AEB,根据平角的定义得到∠AEB=20°,可得∠ABC的度数,根据平行四边形的对角相等即可得结论.
【详解】
解:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠AEB=∠CBE,
∵AB=AE,
∴∠ABE=∠AEB,
∵∠BED=160°,
∴∠AEB=20°,
∴∠ABC=∠ABE+∠CBE=2∠AEB=40°,
∴∠D=∠ABC=40°.
故答案为40°.
本题考查平行四边形的性质,平行线的性质,等腰三角形的性质,正确的识别图形是解题的关键.
11、20
【解析】
先运用待定系数法求出y与x之间的函数关系式,然后把x=150代入解析式就可以求出y的值,从而得出剩余的油量.
【详解】
解:设y与x之间的函数关系式为y=kx+b,由函数图象,得
,
解得: ,
则y=﹣0.1x+1.
当x=150时,
y=﹣0.1×150+1=20(升).
故答案为20
本题考查了一次函数的应用,正确读懂函数图像,利用待定系数法求函数解析式并代入求值是解题的关键.
12、
【解析】
首先写出AB的长,再写出AE的长,再写出EF的长,从而来寻找规律,写出第n个正方形的长,再计算面积即可.
【详解】
根据题意可得AB=1,则正方形ABCD的面积为1
AE= ,则正方形AEBO1面积为
EF= ,则正方形EFBO2面积为
因此可得第n个正方形面积为
故答案为
本题主要考查正方形的性质,关键在于根据图形写出规律,应当熟练掌握.
13、1693
【解析】
如果一个数是智慧数,就能表示为两个正整数的平方差,设这两个数分别m、n,设m>n,即智慧数=m1-n1=(m+n)(m-n),因为m,n是正整数,因而m+n和m-n就是两个自然数.要判断一个数是否是智慧数,可以把这个数分解因数,分解成两个整数的积,看这两个数能否写成两个正整数的和与差.
【详解】
解:1不能表示为两个正整数的平方差,所以1不是“智慧数”.对于大于1的奇正整数1k+1,有1k+1=(k+1)1-k1(k=1,1,…).所以大于1的奇正整数都是“智慧数”.
对于被4整除的偶数4k,有4k=(k+1)1-(k-1)1(k=1,3,…).
即大于4的被4整除的数都是“智慧数”,而4不能表示为两个正整数平方差,所以4不是“智慧数”.
对于被4除余1的数4k+1(k=0,1,1,3,…),设4k+1=x1-y1=(x+y)(x-y),其中x,y为正整数,
当x,y奇偶性相同时,(x+y)(x-y)被4整除,而4k+1不被4整除;
当x,y奇偶性相异时,(x+y)(x-y)为奇数,而4k+1为偶数,总得矛盾.
所以不存在自然数x,y使得x1-y1=4k+1.即形如4k+1的数均不为“智慧数”.
因此,在正整数列中前四个正整数只有3为“智慧数”,此后,每连续四个数中有三个“智慧数”.
因为1017=(1+3×671),4×(671+1)=1691,
所以1693是第1018个“智慧数”,
故答案为:1693.
本题考查平方差公式,有一定的难度,主要是对题中新定义的理解与把握.
三、解答题(本大题共5个小题,共48分)
14、(1)[,−1,−1];(2)m1=−1,m2=.
【解析】
(1)利用“图象数”的定义求解;
(2)根据新定义得到二次函数的解析式为y=mx2+(m+1)x+m+1,然后根据判别式的意义得到△=(m+1)2−4m(m+1)=0,从而解m的方程即可.
【详解】
解:(1)二次函数y=x2-x-1的“图象数”为[,−1,−1];
故答案为:[,−1,−1];
(2)二次函数的解析式为y=mx2+(m+1)x+m+1,
根据题意得:△=(m+1)2−4m(m+1)=0,
解得:m1=−1,m2=.
本题考查了新定义及抛物线与x轴的交点问题,把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程是解题关键.
15、(1)详见解析;(2)详见解析.
【解析】
(1)利用勾股定理得出符合题意的四边形;
(2)利用平行四边形的面积求法得出符合题意的答案.
【详解】
(1)如图1,平行四边形ABCD即为所求
图1
(2)如图2,菱形ABCD即为所求
图2
此题主要考查了应用设计与作图以及勾股定理确定线段长度,正确借助网格得出是解题关键.
16、(1)m=100(2)两种方案
【解析】
(1)用总价除以单价表示出购进童装的数量,根据两种童装的数量相等列出方程求解即可;
(2)设购进甲种童装x件,表示出乙种童装(200-x)件,然后根据总利润列出一元一次不等式,求出不等式组的解集后,再根据童装的件数是正整数解答;设总利润为W,表示出利润,求得最值即可.
【详解】
(1)根据题意可得:,
解得:m=100,
经检验m=100是原方程的解;
(2)设甲种童装为x件,可得:,
解得:98≤x<100,
因为x取整数,
所以有两种方案:
方案一:甲98,乙102;
方案二:甲99,乙101;
本题考查了分式方程的应用,一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系,解决问题.
17、(1)、;(2)、2.
【解析】
原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果;原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,将a与b的值代入计算即可求出值.
【详解】
解:(1)原式==
(2)原式=1﹣•=1-=
当a=﹣,b=1时,原式=2.
考点:分式的化简求值;分式的混合运算
18、(1);(2)每分钟进水、出水各5L,L.
【解析】
(1)根据题意和函数图象可以求得y与x的函数关系式;
(2)根据函数图象中的数据可以求得每分钟进水、出水各多少升.
【详解】
解:(1)当0≤x≤4时,设y关于x的函数解析式是y=kx,
4k=20,得k=5,
即当0≤x≤4时,y与x的函数关系式为y=5x,
当4<x≤12时,设y与x的函数关系式为y=ax+b,
,得,
即当4≤x≤12时,y与x的函数关系式为,
由上可得,;
(2)进水管的速度为:20÷4=5L/min,
出水管的速度为: L/min,
答:每分钟进水、出水各5L, L.
本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、24或21或
【解析】
情况1:连接EP交AC于点H,依据先证明是菱形,再根据菱形的性质可得到∠ECH=∠PCH=10°,然后依据SAS可证明△ECH≌△PCH,则∠EHC=∠PHC=90°,最后依据EP=2EH=2sin10°•EC求解即可.
情况2:如图2所示:△ECP为等腰直角三角形,则=EC=2.此时,=24
情况2:如图2:过点P′作P′F⊥BC.通过解直角三角形可以解得FC ,EF,再在Rt△P′EF中,利用勾股定理可以求得.
【详解】
解:情况1:如图所示:连接EP交AC于点H.
∵在中,
∴是菱形
∵菱形ABCD中,∠B=10°,
∴∠BCD=120°,∠ECH=∠PCH=10°.
在△ECH和△PCH中
,
∴△ECH≌△PCH.
∴∠EHC=∠PHC=90°,EH=PH.
∴EP=2EH=2sin10°•EC=2××2=1.
∴=21
情况2:如图2所示:△ECP为等腰直角三角形,则=EC=2.
∴=24
情况2:如图2:过点P′作P′F⊥BC.
∵P′C=2,BC=4,∠B=10°,
∴P′C⊥AB.
∴∠BCP′=20°.
∴FC=×2=2,P′F=,EF=2-2.
∴=,
故答案为:24或21或.
本题主要考查的是菱形的性质,全等三角形的判定和性质,以及解直角三角形和勾股定理得结合,是综合性题目,难度较大.
20、
【解析】
根据函数图象与x轴的交点坐标,当y<0即图象在x轴下侧,求出即可.
【详解】
当y<0时,图象在x轴下方,
∵与x交于(1,0),
∴y<0时,自变量x的取值范围是x<1,
故答案为:x<1.
本题考查了一次函数与一元一次不等式,解题的关键是运用观察法求自变量取值范围通常是从交点观察两边得解.
21、1.
【解析】
根据菱形的对角线互相垂直平分表示出点A、点D的坐标,再根据直线解析式求出点A移动到MN上时的x的值,从而得到m的取值,由此即可求得答案.
【详解】
∵菱形ABCD的顶点C(-1,0),点B(0,2),
∴点A的坐标为(-1,4),点D坐标为(-2,2),
∵D(n,2),
∴n=-2,
当y=4时,-x+5=4,
解得x=2,
∴点A向右移动2+1=3时,点A在MN上,
∴m的值为3,
∴m+n=1,
故答案为:1.
本题考查了一次函数图象上点的坐标特征,菱形的性质,坐标与图形变化-平移,正确把握菱形的性质、一次函数图象上点的坐标特征是解题的关键.
22、
【解析】
根据题意可得重叠部分的面积和面积相等,求出面积即可.
【详解】
解:如图,
四边形和是正方形
又
故答案为:1
本题考查了正方形的性质,将重叠部分的面积进行转化是解题的关键.
23、减小 第一、三、四
【解析】
根据函数解析式和一次函数的性质可以解答本题.
【详解】
解:直线,,
随的减小而减小,函数图象经过第一、三、四象限,
故答案为:减小,第一、三、四.
本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.
二、解答题(本大题共3个小题,共30分)
24、单位这次共有名员工去旅游
【解析】
由题意易知该单位旅游人数一定超过25人,然后设共有x名员工去旅游,依据题意列出方程解方程,得到两个x的解,再通过人均旅游不低于700,对x的解进行检验即可得到答案
【详解】
解:设该单位这次共有名员工去旅游
旅游的员工人数一定超过人
根据题意得
整理得,
解得
当时,不合题意应舍去
当时,符合题意
答:该单位这次共有名员工去旅游.
本题主要考查一元二次方程的应用,根据题意做出判断列出方程是本题解题关键,要注意解出的x要进行
25、(1)详见解析;(2)2
【解析】
(1)根据对角线互相垂直的平行四边形是菱形证明即可;
(2)由菱形的性质得到AO=CO,即可得到OF为△ABC的中位线,从的得到FO∥AB,FO的长,进而得到A∠BAC=90°,EF的长.在Rt△BAC中,由勾股定理得出AC的长,根据菱形面积等于对角线乘积的一半即可得出结论.
【详解】
(1)证明:如图,∵四边形ABCD是平行四边形,∴AD=BC,且AD∥BC.
∵DE=BF
∴AE=CF,且AE∥CF,∴四边形AECF为平行四边形.
∵AC⊥EF,∴四边形AECF为菱形.
(2)∵四边形AECF是菱形,∴AO=CO.
∵F为BC中点,∴FO∥AB,FO=AB=3,∴∠BAC=∠FOC=90°,EF=1.
∵AB=1,BC=10,∴AC=8,∴S菱形AECF=2.
本题考查了平行四边形的性质、菱形的判定及性质,三角形中位线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
26、(1)(2) (3)是, 理由见解析.
【解析】
(1)利用四边形OBCD是边长为4的正方形,正方形CEFG,的性质可得答案,
(2)利用勾股定理求解的长,可得面积,
(3)分两种情况讨论,利用正方形与三角形的全等的性质,得到的坐标,根据坐标得到答案.
【详解】
解:(1) 四边形OBCD是边长为4的正方形,
正方形CEFG,
三点共线,
故答案为:
(2)由
正方形CEFG的面积
(3)如图,当在的左边时,作于,
正方形CEFG ,
四边形OBCD是边长为4的正方形,
在与中,
设
①+②得:
在直线上,
当在的右边时,同理可得:在直线上.
综上:当点E在轴上移动时,点F是在直线上运动.
本题考查的是正方形的性质,三角形的全等的判定与性质,勾股定理的应用,点的移动轨迹问题,即点在一次函数的图像上移动,掌握以上知识是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
价格
甲
乙
进价(元/件)
m
m+20
售价(元/件)
150
160
2025届辽宁省营口中学数学九上开学质量跟踪监视试题【含答案】: 这是一份2025届辽宁省营口中学数学九上开学质量跟踪监视试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届江苏省苏州市立达中学数学九上开学质量跟踪监视试题【含答案】: 这是一份2025届江苏省苏州市立达中学数学九上开学质量跟踪监视试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年上海市民办新竹园中学数学九上开学质量跟踪监视模拟试题【含答案】: 这是一份2024年上海市民办新竹园中学数学九上开学质量跟踪监视模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。