搜索
    上传资料 赚现金
    英语朗读宝

    内蒙古乌兰察布市化德县2025届数学九年级第一学期开学质量跟踪监视模拟试题【含答案】

    内蒙古乌兰察布市化德县2025届数学九年级第一学期开学质量跟踪监视模拟试题【含答案】第1页
    内蒙古乌兰察布市化德县2025届数学九年级第一学期开学质量跟踪监视模拟试题【含答案】第2页
    内蒙古乌兰察布市化德县2025届数学九年级第一学期开学质量跟踪监视模拟试题【含答案】第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    内蒙古乌兰察布市化德县2025届数学九年级第一学期开学质量跟踪监视模拟试题【含答案】

    展开

    这是一份内蒙古乌兰察布市化德县2025届数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)某校开展“节约每一滴水”活动,为了了解开展活动一个月以来节约用水的情况,从八年级的400名同学中选取20名同学统计了各自家庭一个月约节水情况.见表:
    请你估计这400名同学的家庭一个月节约用水的总量大约是( )
    A.130m3B.135m3C.6.5m3D.260m3
    2、(4分)小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是( )
    A.①②B.②③C.①③D.②④
    3、(4分)一辆汽车以50的速度行驶,行驶的路程与行驶的时间之间的关系式为,其中变量是( )
    A.速度与路程B.速度与时间C.路程与时间D.速度
    4、(4分)已知直角三角形的两条直角边的长分别是1,,则斜边长为( )
    A.1B.C.2D.3
    5、(4分)如图,一次函数,的图象与的图象相交于点,则方程组的解是()
    A.B.C.D.
    6、(4分)化简:的结果是( )
    A.B.C.﹣D.﹣
    7、(4分)9的算术平方根是( )
    A.﹣3B.±3C.3D.
    8、(4分)函数的图象不经过第二象限,则的取值范围是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)若,则的取值范围为_____.
    10、(4分)若直角三角形的斜边长为6,则这个直角三角形斜边的中线长________.
    11、(4分)数据5,5,6,6,6,7,7的众数为_____
    12、(4分)如图,中,,,,是内部的任意一点,连接,,,则的最小值为__.
    13、(4分)已知x+y=﹣1,xy=3,则x2y+xy2=_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在直角坐标系中,每个小方格都是边长为的正方形,的顶点均在格点上,点的坐标是.
    先将沿轴正方向向上平移个单位长度,再沿轴负方向向左平移个单位长度得到,画出,点坐标是________;
    将绕点逆时针旋转,得到,画出,并求出点的坐标是________;
    我们发现点、关于某点中心对称,对称中心的坐标是________.
    15、(8分)如图,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=CD,连接CF.
    (1)求证:△AEF≌△DEB;
    (2)若AB=AC,试判断四边形ADCF的形状,并证明你的结论.
    16、(8分)阅读下列解题过程,并解答后面的问题:
    如图,在平面直角坐标系中,,,C为线段AB的中点,求C的坐标.解:分别过A,C作x轴的平行线,过B,C作y轴的平行线,两组平行线的交点如图1.
    设C的坐标为,则D、E、F的坐标为,,
    由图可知:,
    ∴C的坐标为
    问题:
    (1)已知A(-1,4),B(3,-2),则线段AB的中点坐标为______
    (2)平行四边形ABCD中,点A、B、C的坐标分别为(1,-4),(0,2),(5,6),求D的坐标.
    (3)如图2,B(6,4)在函数的图象上,A的坐标为(5,2),C在x轴上,D在函数的图象上,以A、B、C、D四个点为顶点构成平行四边形,直接写出所有满足条件的D点的坐标.
    17、(10分)如图,在ABC中,∠C=90º,BD是ABC的一条角一平分线,点O、E、F分别在BD、BC、AC上,且四边形OECF是正方形,
    (1)求证:点O在∠BAC的平分线上;
    (2)若AC=5,BC=12,求OE的长
    18、(10分)如图,在平面直角坐标系中,已知A(-3,-4),B(0,-2).
    (1)△OAB绕O点旋转180°得到△OA1B1,请画出△OA1B1,并写出A1,B1的坐标;
    (2)判断以A,B,A1,B1为顶点的四边形的形状,并说明理由.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在4×4方格纸中,小正方形的边长为1,点A,B,C在格点上,若△ABC的面积为2,则满足条件的点C的个数是_____.
    20、(4分)如图,在矩形内放入四个小正方形和两个小长方形后成中心对称图形,其中顶点,分别在边,上,小长方形的长与宽的比值为,则的值为_____.
    21、(4分)已知某汽车油箱中的剩余油量(升)是该汽车行驶时间(小时)的一次函数,其关系如下表:
    由此可知,汽车行驶了__________小时, 油箱中的剩余油量为升.
    22、(4分)将直线向上平移一个单位长度得到的一次函数的解析式为_______________.
    23、(4分)某初中学校共有学生720人,该校有关部门从全体学生中随机抽取了50人对其到校方式进行调查,并将调查结果制成了如图所示的条形统计图,由此可以估计全校坐公交车到校的学生有 ▲ 人.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知y与x-1成正比例,且函数图象经过点(3,-6).
    (1)求这个函数的解析式并画出这个函数图象.
    (2)已知图象上的两点C(x1,y1)、D(x2,y2),如果x1>x2,比较y1、y2的大小.
    25、(10分)如图1,正方形ABCD的边长为6cm,点F从点B出发,沿射线AB方向以1cm/秒的速度移动,点E从点D出发,向点A以1cm/秒的速度移动(不到点A).设点E,F同时出发移动t秒.
    (1)在点E,F移动过程中,连接CE,CF,EF,则△CEF的形状是 ,始终保持不变;
    (2)如图2,连接EF,设EF交BD于点M,当t=2时,求AM的长;
    (3)如图3,点G,H分别在边AB,CD上,且GH=cm,连接EF,当EF与GH的夹角为45°,求t的值.
    26、(12分)如图,在矩形ABCD中,∠BAD的平分线交BC于点E,O为对角线AC、BD的交点,且∠CAE=15° .
    (1)求证:△AOB为等边三角形;
    (2)求∠BOE度数.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    先计算这20名同学各自家庭一个月的节水量的平均数,即样本平均数,然后乘以总数400即可解答.
    【详解】
    20名同学各自家庭一个月平均节约用水是:
    (0.2×2+0.25×4+0.3×6+0.4×7+0.5×1)÷20=0.325(m3),
    因此这400名同学的家庭一个月节约用水的总量大约是:400×0.325=130(m3),
    故选A.
    2、B
    【解析】
    A、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,
    当②∠ABC=90°时,菱形ABCD是正方形,故此选项正确,不合题意;
    B、∵四边形ABCD是平行四边形,
    ∴当②∠ABC=90°时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故此选项错误,符合题意;
    C、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当③AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;
    D、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当④AC⊥BD时,矩形ABCD是正方形,故此选项正确,不合题意.
    故选C.
    3、C
    【解析】
    在函数中,给一个变量x一个值,另一个变量y就有对应的值,则x是自变量,y是因变量,据此即可判断.
    【详解】
    解:由题意的:s=50t,路程随时间的变化而变化,则行驶时间是自变量,行驶路程是因变量;
    故选:C.
    此题主要考查了自变量和因变量,正确理解自变量与因变量的定义,是需要熟记的内容.
    4、C
    【解析】
    根据勾股定理进行计算,即可求得结果.
    【详解】
    解:直角三角形的两条直角边的长分别为1,,
    则斜边长==2;
    故选C.
    本题考查了勾股定理;熟练运用勾股定理进行求解是解决问题的关键.
    5、A
    【解析】
    根据图象求出交点P的坐标,根据点P的坐标即可得出答案.
    【详解】
    解:∵由图象可知:一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2的交点P的坐标是(-2,3),
    ∴方程组的解是,
    故选A.
    本题考查了对一次函数与二元一次方程组的关系的理解和运用,主要考查学生的观察图形的能力和理解能力,题目比较典型,但是一道比较容易出错的题目.
    6、D
    【解析】
    根据二次根式的性质由题意可知,我们在变形时要注意原式的结果应该是个负数,然后根据二次根式的性质化简而得出结果.
    【详解】
    解:原式
    故选:.
    本题考查了二次根式的性质与二次根式的化简,关键要把握住二次根式成立的条件.
    7、C
    【解析】
    试题分析:9的算术平方根是1.故选C.
    考点:算术平方根.
    8、A
    【解析】
    根据图象在坐标平面内的位置关系确定的取值范围,从而求解.
    【详解】
    解:一次函数的图象不经过第二象限,
    则可能是经过一三象限或一三四象限,
    经过一三象限时,k-2=1;
    经过一三四象限时,k-2<1.
    故.
    故选:A.
    本题主要考查一次函数图象在坐标平面内的位置与、的关系.解答本题注意理解:直线所在的位置与、的符号有直接的关系.时,直线必经过一、三象限;时,直线必经过二、四象限;时,直线与轴正半轴相交;时,直线过原点;时,直线与轴负半轴相交.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    根据二次根式的性质可知,开方结果大于等于0,于是1-a≥0,解不等式即可.
    【详解】
    ∵,
    ∴1−a≥0,
    ∴a≤1,
    故答案是a≤1.
    本题考查二次根式的性质与化简,能根据任意一个非负数的算术平方根都大于等于0得出1−a≥0是解决本题的关键.
    10、1
    【解析】
    根据直角三角形的性质直接求解.
    【详解】
    解:直角三角形斜边长为6,
    这个直角三角形斜边上的中线长为1.
    故答案为:1.
    本题考查了直角三角形的性质,解决此题的关键是熟记直角三角形斜边上的中线等于斜边的一半.
    11、6
    【解析】
    根据众数的定义可得结论.
    【详解】
    解:数据5,5,6,6,6,7,7,其中数字5出现2次,数字6出现3次,数字7出现2次,所以众数为6.
    故答案为:6
    本题主要考查众数的定义,解题的关键是掌握众数的定义:一组数据中出现次数最多的数据叫做众数.
    12、.
    【解析】
    将绕着点逆时针旋转,得到,连接,,通过三角形全等得出三点共线长度最小,再利用勾股定理解答即可.
    【详解】
    如图,将绕着点逆时针旋转,得到,连接,,
    ,,,,,
    是等边三角形
    当点,点,点,点共线时,有最小值

    故答案为:.
    本题考查三点共线问题,正确画出辅助线是解题关键.
    13、-1
    【解析】
    直接利用提取公因式法分解因式,进而把已知数据代入求出答案.
    【详解】
    解:∵x+y=﹣1,xy=1,∴x2y+xy2=xy(x+y)
    =1×(﹣1)
    =﹣1.
    故答案为﹣1.
    本题主要考查了提取公因式法分解因式,正确分解因式是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、, , .
    【解析】
    (1)直接利用平移的性质得出对应点位置进而得出答案;
    (2)直接利用旋转的性质得出对应点位置进而得出答案;
    (3)直接利用关于点对称的性质得出对称中心即可.
    【详解】
    (1)如图所示:△A1B1C1,即为所求,点C1坐标是:(−2,1);
    故答案为(−2,1);
    (2)如图所示:△A2B1C2,即为所求,点C2坐标是:(−5,0);
    故答案为(−5,0);
    (3)点C. C2关于某点中心对称,对称中心的坐标是:(−3,−1).
    故答案为(−3,−1).
    本题考查了坐标系中作图,解题的关键是根据图形找出相对应的点即可.
    15、(1)证明见解析;(2)四边形ADCF是矩形,证明见解析.
    【解析】
    【分析】(1)由AF∥BC得∠AFE=∠EBD,继而结合∠EAF=∠EDB、AE=DE即可判定全等;
    (2)根据AB=AC,且AD是BC边上的中线可得∠ADC=90°,由四边形ADCF是矩形可得答案.
    【详解】(1)∵E是AD的中点,
    ∴AE=DE,
    ∵AF∥BC,
    ∴∠AFE=∠DBE,∠EAF=∠EDB,
    ∴△AEF≌△DEB(AAS);
    (2)连接DF,
    ∵AF∥CD,AF=CD,
    ∴四边形ADCF是平行四边形,
    ∵△AEF≌△DEB,
    ∴BE=FE,
    ∵AE=DE,
    ∴四边形ABDF是平行四边形,
    ∴DF=AB,
    ∵AB=AC,
    ∴DF=AC,
    ∴四边形ADCF是矩形.
    【点睛】本题考查了全等三角形的判定与性质、矩形的判定等,熟练掌握全等三角形的判定与性质是解题的关键.
    16、(1)(1,1);(2)D的坐标为(6,0);(3)D(2,2)或 D(−6,−2)、D(10,6).
    【解析】
    (1)直接套用中点坐标公式,即可得出中点坐标;
    (2)根据AC、BD的中点重合,可得出,,代入数据可得出点D的坐标;
    (3)分类讨论,①当AB为该平行四边形一边时,此时CD∥AB,分别求出以AD、BC为对角线时,以AC、BD为对角线的情况可得出点D坐标;②当AB为该平行四边形的一条对角线时,根据AB中点与CD中点重合,可得出点D坐标.
    【详解】
    解:(1)AB中点坐标为(,)即(1,1);
    (2)根据平行四边形的性质:对角线互相平分,可知AC、BD的中点重合,
    由中点坐标公式可得:,,
    代入数据得:,,
    解得:xD=6,yD=0,
    所以点D的坐标为(6,0);
    (3)①当AB为该平行四边形一边时,则CD∥AB,对角线为AD、BC或AC、BD;
    故可得:,或,,
    故可得yC−yD=yA−yB=2或yD−yC=yA−yB=−2,
    ∵yC=0,
    ∴yD=2或−2,
    代入到y=x+1中,可得D(2,2)或 D (−6,−2).
    当AB为该平行四边形的一条对角线时,则CD为另一条对角线;
    ,,
    ∴yC+yD=yA+yB=2+4,
    ∵yC=0,
    ∴yD=6,
    代入到y=x+1中,可得D(10,6)
    综上,符合条件的D点坐标为D(2,2)或 D(−6,−2)、D(10,6).
    本题考查了一次函数的综合题,涉及了中点坐标公式、平行四边形的性质,难点在第三问,注意分类讨论,不要漏解,难度较大.
    17、(1)证明见解析;(2)2.
    【解析】
    (1)考察角平分线定理的性质,及直角三角形全等的判断方法,“HL”;(2)利用全等得到线段AM=BE,AM=AF,利用正方形OECF,得到四边都相等,从而利用OE与BE、AF及AB的关系求出OE的长
    【详解】
    解:(1)过点O作OM⊥AB于点M
    ∵正方形OECF
    ∴OE=EC=CF=OF,OE⊥BC于E,OF⊥AC于F
    ∵BD平分∠ABC,OM⊥AB于M,OE⊥BC于E
    ∴OM=OE=OF
    ∵OM⊥AB于M, OE⊥BC于E
    ∴∠AMO=90°,∠AFO=90°

    ∴Rt△AMO≌Rt△AFO
    ∴∠MA0=∠FAO
    ∴点O在∠BAC的平分线上
    (2)∵Rt△ABC中,∠C=90°,AC=5,BC=12
    ∴AB=13
    ∴BE=BM,AM=AF
    又BE=BC-CE,AF=AC-CF,而CE=CF=OE
    ∴BE=12-OE,AF=5-OE
    ∴BM+AM=AB
    即BE+AF=13
    12-OE+5-OE=13
    解得OE=2
    本题考查角平分线的判定,全等三角形的判定及性质,掌握HL定理的判定方法及全等三角形的性质是本题的解题关键.
    18、(1)画图见解析,A1(3,4),B1(0,2);(2)以A、B、A1、B1为顶点的四边形为平行四边形,理由见解析.
    【解析】
    (1)延长AO至A1,A1O=AO, 延长BO至B1,B1O=AO,顺次连接A1B1O,再根据关于原点对称的点的坐标关系,写出A1,B1的坐标.(2)由两组对边相等,可知四边形是平行四边形.
    【详解】
    解:(1)如图图所示,△OA1B1即为所求,
    A1(3,4)、B1(0,2);
    (2)由图可知,OB=OB1=2、OA=OA1==5,
    ∴四边形ABA1B1是平行四边形.
    本题考核知识点:图形旋转,中心对称和点的坐标,平行四边形判定. 解题关键点:熟记关于原点对称的点的坐标关系,掌握平行四边形的判定定理.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1.
    【解析】
    根据三角形的面积公式,只要找出底乘以高等于4的点的位置即可.
    【详解】
    解:如图,点C的位置可以有1种情况.
    故答案为:1.
    本题主要考查了勾股定理及三角形的面积,根据格点的情况,按照一定的位置查找,不要漏掉而导致出错.
    20、
    【解析】
    连结,作于,根据中心对称图形的定义和相似三角形的性质可得两直角边的比是,进一步得到长与宽的比即可.
    【详解】
    解:连结,作于,
    在矩形内放入四个小正方形和两个小长方形后成中心对称图形,
    ,,

    长与宽的比为,
    即,
    故答案为:.
    此题考查了中心对称图形、相似三角形的性质、全等三角形的性质、矩形的性质、正方形的性质等知识,关键是理解直角三角形两直角边的比是.
    21、11.5
    【解析】
    根据剩余油量(升)、汽车行驶时间(小时),可求出每千米用油量,根据题意可写出函数式.
    【详解】
    根据题意得每小时的用油量为,
    ∴剩余油量(升)与汽车行驶时间(小时)的函数关系式:,
    当y=8时,x=11.5.
    故答案为:11.5.
    此题考查一次函数,解题关键在于结合实际列出一次函数关系式求解即可.
    22、
    【解析】
    解:由平移的规律知,得到的一次函数的解析式为.
    23、216
    【解析】
    由题意得,50个人里面坐公交车的人数所占的比例为:15/50 =30%,
    故全校坐公交车到校的学生有:720×30%=216人.
    即全校坐公交车到校的学生有216人.
    二、解答题(本大题共3个小题,共30分)
    24、(1)y=-3x+3. 画图见解析;(2)y1x2,则y1

    相关试卷

    内蒙古通辽市开鲁2025届九上数学开学质量跟踪监视模拟试题【含答案】:

    这是一份内蒙古通辽市开鲁2025届九上数学开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    内蒙古阿拉善2024-2025学年九年级数学第一学期开学质量跟踪监视试题【含答案】:

    这是一份内蒙古阿拉善2024-2025学年九年级数学第一学期开学质量跟踪监视试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    广西贵港市2025届数学九年级第一学期开学质量跟踪监视模拟试题【含答案】:

    这是一份广西贵港市2025届数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map