2025届江苏省无锡江阴市南菁实验学校数学九上开学监测模拟试题【含答案】
展开这是一份2025届江苏省无锡江阴市南菁实验学校数学九上开学监测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知四边形ABCD,下列说法正确的是( )
A.当AD=BC,AB//DC时,四边形ABCD是平行四边形
B.当AD=BC,AB=DC时,四边形ABCD是平行四边形
C.当AC=BD,AC平分BD时,四边形ABCD是矩形
D.当AC=BD,AC⊥BD时,四边形ABCD是正方形
2、(4分)平行四边形具有的特征是( )
A.四个角都是直角B.对角线相等
C.对角线互相平分D.四边相等
3、(4分)菱形的对角线长分别是,则这个菱形的面积是( )
A.B.C.D.
4、(4分)点A、B、C是平面内不在同一条直线上的三点,点D是平面内任意一点,若A、B、C、D四点恰能构成一个平行四边形,则在平面内符合这样条件的点D有( )
A.1个B.2个C.3个D.4个
5、(4分)某水资源保护组织对邢台某小区的居民进行节约水资源的问卷调查.某居民在问卷的选项代号上画“√”,这个过程是收集数据中的( )
A.确定调查范围B.汇总调查数据
C.实施调查D.明确调查问题
6、(4分)绍兴市著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为( )
A.4mB.5mC.6mD.8m
7、(4分)如图,在正方形ABCD中,E、F分别是边CD、AD上的点,且CE=DF.AE与BF相交于点O,则下列结论错误的是( )
A.AE=BFB.AE⊥BF
C.AO=OED.S△AOB=S四边形DEOF
8、(4分)如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠DEF的度数是( )
A.25°B.40°C.45°D.50°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,于点E,于点F,,求证:.
试将下面的证明过程补充完整填空:
证明:,已知
______
同位角相等,两直线平行,
两直线平行,同旁内角互补,
又已知,
______,同角的补角相等
______内错角相等,两直线平行,
______
10、(4分)已知函数关系式:,则自变量x的取值范围是 ▲ .
11、(4分)如图,在平面直角坐标系中,已知,,是轴上的一条动线段,且,当取最小值时,点坐标为______.
12、(4分)如图,在中,,,,点在上,以为对角线的所有中,的最小值是____.
13、(4分)如图,在菱形中,,菱形的面积为15,则菱形的对角线之和为__.
三、解答题(本大题共5个小题,共48分)
14、(12分)某直销公司现有名推销员,月份每个人完成销售额(单位:万元),数据如下:
整理上面的数据得到如下统计表:
(1)统计表中的 ; ;
(2)销售额的平均数是 ;众数是 ;中位数是 .
(3)月起,公司为了提高推销员的积极性,将采取绩效工资制度:规定一个基本销售额,在基本销售额内,按抽成;从公司低成本与员工愿意接受两个层面考虑,你认为基本销售额定位多少万元?请说明理由.
15、(8分)先化简,再求值:,其中是满足不等式组的整数解.
16、(8分)先化简(1+)÷,再选择一个恰当的x值代人并求值.
17、(10分)某电冰箱厂每个月的产量都比上个月増长的百分数相同.己知该厂今年月份的电冰箱产量为万台,月份比月份多生产了万台.
(1)求该厂今年产量的月平均増长率为多少?
(2)预计月份的产量为多少万台?
18、(10分)一个有进水管与出水管的容器,从某时刻开始8min内既进水又出水,在随后的4min内只进水不出水,每分钟的进水量和出水量是两个常数.容器内的水量y(单位:L)与时间x(单位:min)(0≤x≤12)之间的关系如图所示:
(1)求y关于x的函数解析式;
(2)每分钟进水、出水各多少升?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知一组数据11、17、11、17、11、24共六个数,那么数11在这组数据中的频率是______.
20、(4分)把二次根式化成最简二次根式得到的结果是______.
21、(4分)如图,点P为函数y=(x>0)图象上一点过点P作x轴、y轴的平行线,分别与函数y(x>0)的图象交于点A,B,则△AOB的面积为_____.
22、(4分)一次函数与轴的交点是__________.
23、(4分)化简: 的结果是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)若抛物线上,它与轴交于,与轴交于、,是抛物线上、之间的一点,
(1)当时,求抛物线的方程,并求出当面积最大时的的横坐标.
(2)当时,求抛物线的方程及的坐标,并求当面积最大时的横坐标.
(3)根据(1)、(2)推断的横坐标与的横坐标有何关系?
25、(10分)如图,四边形是正方形,是边上一点,是的中点,平分.
(1)判断与的数量关系,并说明理由;
(2)求证:;
(3)若,求的长.
26、(12分)平面直角坐标系xOy中,对于点M和图形W,若图形W上存在一点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称点M与图形W是“中心轴对称”的
对于图形和图形,若图形和图形分别存在点M和点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称图形和图形是“中心轴对称”的.
特别地,对于点M和点N,若存在一条经过原点的直线l,使得点M与点N关于直线l对称,则称点M和点N是“中心轴对称”的.
(1)如图1,在正方形ABCD中,点,点,
①下列四个点,,,中,与点A是“中心轴对称”的是________;
②点E在射线OB上,若点E与正方形ABCD是“中心轴对称”的,求点E的横坐标的取值范围;
(2)四边形GHJK的四个顶点的坐标分别为,,,,一次函数图象与x轴交于点M,与y轴交于点N,若线段与四边形GHJK是“中心轴对称”的,直接写出b的取值范围.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
试题解析:∵一组对边平行且相等的四边形是平行四边形,
∴A不正确;
∵两组对边分别相等的四边形是平行四边形,
∴B正确;
∵对角线互相平分且相等的四边形是矩形,
∴C不正确;
∵对角线互相垂直平分且相等的四边形是正方形,
∴D不正确;
故选B.
考点:1.平行四边形的判定;2.矩形的判定;3.正方形的判定.
2、C
【解析】
根据平行四边形的性质进行选择.
【详解】
平行四边形对角线互相平分,对边平行且相等,对角相等.
故选C
本题考核知识点:平行四边形性质. 解题关键点:熟记平行四边形性质.
3、B
【解析】
根据菱形的面积公式:菱形面积=ab(a、b是两条对角线的长度)可得到答案.
【详解】
菱形的面积:
故选:B.
此题主要考查了菱形的面积公式,关键是熟练掌握面积公式.
4、C
【解析】
试题分析:由题意画出图形,在一个平面内,不在同一条直线上的三点,与D点恰能构成一个平行四边形,符合这样条件的点D有3个.
故选C.
考点:平行四边形的判定
5、C
【解析】
根据收集数据的几个阶段可以判断某居民在问卷上的选项代号画“√”,属于哪个阶段,本题得以解决.
【详解】
解:某居民在问卷上的选项代号画“√”,这是数据中的实施调查阶段,
故选:C.
本题考查调查收集数据的过程与方法,解题的关键是明确收集数据的几个阶段.
6、D
【解析】
试题分析:连接OA,根据垂径定理可得AB=2AD,根据题意可得:OA=5m,OD=CD-OC=8-5=3m,根据勾股定理可得:AD=4m,则AB=2AD=2×4=8m.
考点:垂径定理.
7、C
【解析】
试题解析:A、∵在正方形ABCD中,
又
∴≌
故此选项正确;
B、∵≌
故此选项正确;
C、连接
假设AO=OE,
∴
∴≌
又
∴AB不可能等于BE,
∴假设不成立,即
故此选项错误;
D、∵≌
∴S△AOB=S四边形DEOF,故此选项正确.
故选C.
8、D
【解析】
首先根据题意证明,则可得 ,根据∠CBF=20°可计算的 的度数,再依据 进而计算∠DEF的度数.
【详解】
解: 四边形ABCD为正方形
BC=DC
EC=EC
在直角三角形BCF中,
∠DEF=50°
故选D.
本题主要考查正方形的性质,是基本知识点,应当熟练掌握.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、垂直的定义;;BC;两直线平行,同位角相等
【解析】
根据垂线的定义结合平行线的判定定理可得出,由平行线的性质可得出,结合可得出,从而得出。根据平行线的性质即可得出,此题得解.
【详解】
证明:,
(垂直的定义),
(同位角相等,两直线平行),
(两直线平行,同旁内角互补),
又,
(同角的补角相等),
(内错角相等,两直线平行),
(两直线平行,同位角相等).
故答案为:垂直的定义;;;两直线平行,同位角相等.
本题考查了平行线的判定与性质以及垂线的定义,熟练掌握平行线的判定与性质定理是解题的关键.
10、
【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须。
11、
【解析】
如图把点A向右平移1个单位得到E(1,1),作点E关于x轴的对称点F(1,-1),连接BF,BF与x轴的交点即为点Q,此时AP+PQ+QB的值最小,求出直线BF的解析式,即可解决问题.
【详解】
解:如图把点4向右平移1个单位得到E(1,1),作点E关于x轴的对称点F(1,-1),连接BF,BF与x轴的交点即为点Q,此时4P+PQ+QB的值最小.
设最小BF的解析式为y=kx+b,则有解得
∴直线BF的解析式为y=x-2,
令y=0,得到x=2.
∴Q(2.0)
故答案为(2,0).
本题考查轴对称最短问题、坐标与图形的性质、一次函数的应用等知识,解题的关键是学会利用对称解决最短问题,学会构建一次函数解决交点问题,属于中考常考题型
12、6
【解析】
由平行四边形的对角线互相平分、垂线段最短知,当OD⊥BC时,DE线段取最小值.
【详解】
∵四边形ADCE是平行四边形,
∴OD=OE,OA=OC.
∴当OD取最小值时,DE线段最短,此时OD⊥BC.
∴OD是△ABC的中位线,
∴,,
∴,
∵在Rt△ABC中,∠B=90°,
,,
∴,
∴.
故答案为:6.
本题考查了平行四边形的性质,三角形中位线的性质以及垂线段最短的知识.正确理解DE最小的条件是关键.
13、
【解析】
由菱形的性质得出,,,由勾股定理和良宵美景得出OA2+OB2=16①,2OB×OB=15②,①+②得:(OA+OB)2=31,即可得出结果.
【详解】
解:四边形是菱形,
,,,
,菱形的面积为15,
①,,
②,
①②得:,
,
;
故答案为:.
本题考查了菱形的性质、勾股定理、完全平方公式;熟练掌握菱形的性质是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1),;(2)平均数:,众数:,中位数:;(3)基本销售额定为万元,理由详见解析.
【解析】
(1)根据题干中的数据可得出a,b的值;
(2)按照平均数,中位数,众数的定义分别求得;
(3)根据平均数,中位数,众数的意义回答.
【详解】
解:(1),;
(2)平均数=(10×2+13×3+15+17×7+18+22×4+23×3+24×3+26×4+28×2)÷30=20(万元);
出现次数最多的是17万元,所以众数是17(万元);
把销售额按从小到大顺序排列后,第15,16位都是22万元,所以中位数是22(万元).
故答案为:;;.
(3)基本销售额定为万元.
理由:作为数据的代表,本组数据的平均数、众数、中位数三个量作为基本额都具有合理性.其中中位数为万最大,选择中位数对公司最有利,付出成本最低,对员工来说,这只是个中等水平,可以接受,所以选择中位数作为基本额.
考查学生对平均数、中位数、众数的计算及运用其进行分析的能力.
15、化简得: 求值得:.
【解析】
先解不等式组,求得不等式组的整数解,后利用分式混合运算化简分式,把使分式有意义的字母的值代入求值即可.
【详解】
解:因为,解得:<,
因为为整数,所以 .
原式
因为,所以取,
所以:上式.
本题考查分式的化简求值,不等式组的解法,特别要注意求值时学生容易忽视分式有意义的条件.
16、x+1 当x=2时,原式=3
【解析】
根据分式化简的方法首先将括号里面的进行通分,然后利用分式的除法法则进行计算.选择x的值时不能取1、0和-1,其他的值随便可以自己选择.
【详解】
解:原式=
=
=x+1
当x=2时,
原式=x+1=2+1=3.
本题考查分式的化简求值,注意分式的分母不能为0.
17、(1)20%;(2)8.64万台.
【解析】
试题分析:
(1)设每个月的月平均增长率为x,则5月的产量为5(1+x)台,6月份的产量为5(1+x)2台,由此即可根据6月份比5月份多生产1.2万台可得方程:5(1+x)2﹣5(1+x)=1.2
,解方程即可得到所求答案;
(2)根据(1)中所得结果即可按7月份的产量为5(1+x)3,即可计算出7月份的产量了.
试题解析:
(1)设该厂今年产量的月平均增长率是x,根据题意得:
5(1+x)2﹣5(1+x)=1.2
解得:x=﹣1.2(舍去),x=0.2=20%.
答:该厂今年的产量的月增长率为20%;
(2)7月份的产量为:5(1+20%)3=8.64(万台).
答:预计7月份的产量为8.64万台.
18、(1);(2)每分钟进水5升,出水升.
【解析】
(1)根据题意和函数图象可以求得y与x的函数关系式;
(2)根据函数图象中的数据可以求得每分钟进水、出水各多少升.
【详解】
解:(1)当0≤x≤8时,设y关于x的函数解析式是y=kx,
8k=10,得k=,
即当0≤x≤8时,y与x的函数关系式为y=,
当8≤x≤12时,设y与x的函数关系式为y=ax+b,
,得
,
即当8≤x≤12时,y与x的函数关系式为y=5x-30,
由上可得,y=;
(2)进水管的速度为:20÷4=5L/min,
出水管的速度为:=L/min
答:每分钟进水、出水各5L,L.
本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、0.1
【解析】
根据公式:频率=即可求解.
【详解】
解:11的频数是3,则频率是:=0.1.
故答案是:0.1.
本题考查了频率公式:频率=,理解公式是关键.
20、3
【解析】
根据二次根式的性质进行化简即可.
【详解】
解:==3.
故答案为:3.
本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.
21、1
【解析】
根据题意作AD⊥x轴于D,设PB⊥x轴于E,,设出P点的坐标,再结合S△AOB=S四边形ABOD﹣S△OAD=S四边形ABOD﹣S△OBE=S梯形ABED,代入计算即可.
【详解】
解:作AD⊥x轴于D,设PB⊥x轴于E,
∵点P为函数y=(x>0)图象上一点,过点P作x轴、y轴的平行线,
∴设P(m,),则A(2m,),B(m,),
∵点A、B在函数y=(x>0)的图象上,
∴S△OBE=S△OAD,
∵S△AOB=S四边形ABOD﹣S△OAD=S四边形ABOD﹣S△OBE=S梯形ABED,
∴S△AOB=(+)(2m﹣m)=1,
故答案为1.
本题主要考查反比例函数的面积问题,这是考试的重点知识,往往结合几何问题求解.
22、
【解析】
根据题目中的解析式,令y=0,求出相应的x的值,即可解答本题.
【详解】
解:解:∵,
∴当y=0时,0= ,得x=,
∴一次函数的图象与x轴交点坐标是(,0),
故答案为:(,0).
本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.
23、
【解析】
原式= ,故答案为.
二、解答题(本大题共3个小题,共30分)
24、(1)2;(2)-2;(3)的横坐标等于的横坐标的一半
【解析】
(1)将k=4代入化成交点式,然后将C(0,4)代入确定a的值,求得B点坐标,连接OP;设,即可求出△BCP的面积表达式,然后求最值即可.
(2)设,将代入得,得到二次函数解析式;令y=0,求出直线BC所在的直线方程;过作平行于轴,交直线于,设、,求出△BCP的面积表达式,然后求最值即可.
(3)由(1)(2)的解答过程,进行推断即可.
【详解】
解:(1)时,
由交点式得,
代入得,
∴,
∵k=4
∴B点坐标;
连,设,
时,最大值为8,
∴的横坐标为2时有最大值.
(2)当时,,
设,
代入得,
∴.
令求得,
易求直线方程为,
过作平行于轴交直线于,
设、,
面积最大值为8,
此时P的横坐标为-2.
(3)根据(1)(2)得,面积最大时的横坐标等于的横坐标的一半.
本题考查了二次函数图像的性质,解题的关键在于根据题意确定△BPC面积的表达式.
25、(1)见解析;(2)见解析;(3).
【解析】
(1)利用平行线的性质得出,再根据角平分线的性质即可解答
(2)过点作交于点,连接,利用HL证明,即可解答
(3)设,则,再利用勾股定理求出a即可解答.
【详解】
(1)如图所示:
与的数量关系:,
理由如下:
,
∵平分,
,
.
(2)如图所示:
过点作交于点,连接.
∵平分,
,
又是的中点,,
,
在和中,
,
,
又,
.
(3)设,则,
在中,由勾股定理得:
解得:,
.
此题考查全等三角形的判定与性质,勾股定理,角平分线的性质,平行线的性质,解题关键在于作辅助线.
26、(1)①P1,P1;②≤xE≤;(2)2≤b≤2+2或-2-2≤b≤-2.
【解析】
(1)①根据画出图形,根据“中心轴对称”的定义即可判断.
②以O为圆心,OA为半径画弧交射线OB于E,以O为圆心,OC为半径画弧交射线OB于F.求出点E,点F的坐标即可判断.
(2)如图3中,设GK交x轴于P.求出两种特殊位置的b的值即可判断:当一次函数y=x+b经过点G(-2,2)时,2=-2+b,b=2+2,当一次函数y=x+b经过点P(-2,0)时,0=-2+b,b=2,观察图象结合图形W1和图形W2是“中心轴对称”的定义可知,当2≤b≤2+2时,线段MN与四边形GHJK是“中心轴对称”的.再根据对称性,求出直线与y轴的负半轴相交时b的范围即可.
【详解】
解:(1)如图1中,
①∵OA=1,OP1=1,OP1=1,
∴P1,P1与点A是“中心轴对称”的,
故答案为P1,P1.
②如图2中,
以O为圆心,OA为半径画弧交射线OB于E,以O为圆心,OC为半径画弧交射线OB于F.
∵在正方形ABCD中,点A(1,0),点C(2,1),
∴点B(1,1),
∵点E在射线OB上,
∴设点E的坐标是(x,y),
则x=y,
即点E坐标是(x,x),
∵点E与正方形ABCD是“中心轴对称”的,
∴当点E与点A对称时,则OE=OA=1,
过点E作EH⊥x轴于点H,则OH2+EH2=OE2,
∴x2+x2=12,
解得x=,
∴点E的横坐标xE=,
同理可求点:F(,),
∵E(,),F(,),
∴观察图象可知满足条件的点E的横坐标xE的取值范围:≤xE≤.
(2)如图3中,设GK交x轴于P.
当一次函数y=x+b经过点G(-2,2)时,2=-2+b,b=2+2,
当一次函数y=x+b经过点P(-2,0)时,0=-2+b,b=2,
观察图象结合图形W1和图形W2是“中心轴对称”的定义可知,当2≤b≤2+2时,线段MN与四边形GHJK是“中心轴对称”的.
根据对称性可知:当-2-2≤b≤-2时,线段MN与四边形GHJK是“中心轴对称”的.
综上所述,满足条件的b的取值范围:2≤b≤2+2或-2-2≤b≤-2.
本题属于一次函数综合题,考查了正方形的性质,“中心轴对称”的定义,一次函数的性质等知识,解题的关键是理解题意,学会性质特殊点特殊位置解决问题,属于中考压轴题.
题号
一
二
三
四
五
总分
得分
销售额
人数
相关试卷
这是一份2024-2025学年江苏省无锡市江阴市南菁高中学实验学校九年级数学第一学期开学预测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江苏省无锡市南菁中学数学九上开学考试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省无锡江阴市南菁实验学校2023-2024学年九上数学期末教学质量检测试题含答案,共8页。试卷主要包含了答题时请按要求用笔,如图,在平行四边形中等内容,欢迎下载使用。