江苏省无锡江阴市南菁实验学校2025届数学九年级第一学期开学质量跟踪监视试题【含答案】
展开
这是一份江苏省无锡江阴市南菁实验学校2025届数学九年级第一学期开学质量跟踪监视试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)为了解某公司员工的年工资情况,小明随机调查了10位员工,其年工资如下单位:万元:4,4,4,5,6,6,7,7,9,则下列统计量中,能合理反映该公司员工年工资中等水平的是
A.平均数B.中位数C.众数D.方差
2、(4分)平行四边形中,,则的度数是( )
A.B.C.D.
3、(4分)如图,中俄“海上联合—2017”军事演习在海上编队演习中,两艘航母护卫舰从同一港口O同时出发,一号舰沿南偏西30°方向以12海里/小时的速度航行,二号舰以16海里/小时速度航行,离开港口1.5小时后它们分别到达A,B两点,相距30海里,则二号舰航行的方向是( )
A.南偏东30°B.北偏东30°C.南偏东 60°D.南偏西 60°
4、(4分)如图,在△ABC中,∠A=90°,AB=AC,∠ABC的角平分线交AC于D,BD=4,过点C作CE⊥BD交BD的延长线于E,则CE的长为( )
A.B.2C.3D.2
5、(4分)小明在画函数(>0)的图象时,首先进行列表,下表是小明所列的表格,由于不认真列错了一个不在该函数图象上的点,这个点是
A.B.C.D.
6、(4分)下列函数中,y随x的增大而减小的函数是( )
A.B.C.D.
7、(4分)如图,△ABC是等边三角形,P是∠ABC的平分线BD上一点,PE⊥AB于点E,线段BP的垂直平分线交BC于点F,垂足为点Q.若BF=2,则PE的长为( )
A.2B.2C.D.3
8、(4分)自驾游是当今社会一种重要的旅游方式,五一放假期间小明一家人自驾去灵山游玩,下图描述了小明爸爸驾驶的汽车在一段时间内路程s(千米)与时间t(小时)的函数关系,下列说法中正确的是( )
A.汽车在0~1小时的速度是60千米/时
B.汽车在2~3小时的速度比0~0.5小时的速度快
C.汽车从0.5小时到1.5小时的速度是80千米/时
D.汽车行驶的平均速度为60千米/时
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,已知函数y=2x+b与函数y=kx-3的图象交于点P(4,-6),则不等式kx-3>2x+b的解集是__________.
10、(4分)用配方法解一元二次方程x2-mx=1时,可将原方程配方成(x-3)2=n,则m+n的值是 ________ .
11、(4分)计算:.
12、(4分)一个n边形的内角和是720°,则n=_____.
13、(4分)如图,在单位为1的方格纸上,……,都是斜边在轴上,斜边长分别为2,4,6……的等腰直角三角形,若的顶点坐标分别为,则依图中所示规律,的坐标为__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在▱ABCD中,对角线AC,BD相交于点O,AB⊥AC,AB=3cm,BC=5cm.点P从A点出发沿AD方向匀速运动,速度为1cm/s.连接PO并延长交BC于点Q,设运动时间为t (0<t<5).
(1)当t为何值时,四边形ABQP是平行四边形?
(2)设四边形OQCD的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使点O在线段AP的垂直平分线上?若存在,求出t的值;若不存在,请说明理由.
15、(8分)如图,中,,,.动点、均从顶点同时出发,点在边上运动,点在边上运动.已知点的运动速度是.当运动停止时,由,,构成的三角形恰好与相似.
(1)试求点的运动速度;
(2)求出此时、两点间的距离.
16、(8分)如图一次函数y=kx+b的图象经过点A和点B.
(1)写出点A和点B的坐标并求出k、b的值;
(2)求出当x=时的函数值.
17、(10分)(1)计算并观察下列各式:
第个: ;
第个: ;
第个:;
······
这些等式反映出多项式乘法的某种运算规律.
(2)猜想:若为大于的正整数,则;
(3)利用(2)的猜想计算;
(4)拓广与应用.
18、(10分)如图,在□ABCD中,对角线AC、BD相交于点O,过点O的直线分别交边AD、BC于E、F,
(1)根据题意补全图形;
(2)求证:DE=BF.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,矩形ABCD的对角线AC与BD相交于点O,,.若,,则四边形OCED的面积为___.
20、(4分)如图如果以正方形的对角线为边作第二个正方形,再以对角线为边作第三个正方形,如此下去,…,已知正方形的面积为1,按上述方法所作的正方形的面积依次为,…(为正整数),那么第8个正方形的面积__.
21、(4分)如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD=_____.
22、(4分)如图,在△ABC中,AB=9,AC=6,BC=12,点M在AB边上,且AM=3,过点M作直线MN与AC边交于点N,使截得的三角形与原三角形相似,则MN=______.
23、(4分)已知y+2和x成正比例,当x=2时,y=4,则y与x的函数关系式是______________.
二、解答题(本大题共3个小题,共30分)
24、(8分)《北京中小学语文学科教学21条改进意见》中的第三条指出:“在教学中重视对国学经典文化的学习,重视历史文化的熏陶,加强与革命传统教育的结合,使学生了解中华文化的悠久历史,增强民族文化自信和价值观自信,使语文教学成为涵养社会主义核心价值观的重要源泉之一”.为此,昌平区掀起了以“阅读经典作品,提升思维品质”为主题的读书活动热潮,在一个月的活动中随机调查了某校初二年级学生的周人均阅读时间的情况,整理并绘制了如下的统计图表:
某校初二年级学生周人均阅读时间频数分布表
请根据以上信息,解答下列问题:
(1)在频数分布表中a=______,b=______;
(2)补全频数分布直方图;
(3)若该校有1600名学生,根据调查数据请你估计,该校学生周人均阅读时间不少于6小时的学生大约有______人.
25、(10分)如图,在矩形ABCD中,AE平分∠BAD,交BC于点E,过点E作EF⊥AD于点F,求证:四边形ABEF是正方形.
26、(12分)化简求值:,其中x=.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据题意,结合员工工资情况,从统计量的角度分析可得答案.
【详解】
根据题意,了解这家公司的员工的工资的中等水平,
结合员工情况表,即要全面的了解大多数员工的工资水平,
故最应该关注的数据的中位数,
故选:B.
此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.
2、D
【解析】
根据平行四边形的对角相等、相邻内角互补求解.
【详解】
∵平行四形ABCD
∴∠B=∠D=180°−∠A
∴∠B=∠D=80°
∴∠B+∠D=160°
故选:D.
本题考查的是利用平行四边形的性质,必须熟练掌握.
3、C
【解析】
【分析】由题意可知OA=18,OB=24,AB=30,由勾股定理逆定理可知∠AOB=90°,结合方位角即可确定出二号舰的航行方向.
【详解】如图,由题意得:OA=12×1.5=18,OB=16×1.5=24,
∵AB=30,
∴OA2+OB2=182+242=900=302=AB2,
∴∠AOB=90°,
∵∠AOC=30°,
∴∠BOC=∠AOB-∠AOC=60°,
∴二号舰航行的方向是南偏东 60°,
故选C.
【点睛】本题考查了方位角、勾股定理逆定理,熟练掌握勾股定理逆定理是解本题的关键.
4、B
【解析】
延长CE与BA延长线交于点F,首先证明△BAD≌△CAF,根据全等三角形的性质可得BD=CF,再证明△BEF≌△BCE可得CE=EF,进而可得CE=BD,即可得出结果.
【详解】
证明:延长CE与BA延长线交于点F,
∵∠BAC=90°,CE⊥BD,
∴∠BAC=∠DEC,
∵∠ADB=∠CDE,
∴∠ABD=∠DCE,
在△BAD和△CAF中,
,
∴△BAD≌△CAF(ASA),
∴BD=CF,
∵BD平分∠ABC,CE⊥DB,
∴∠FBE=∠CBE,
在△BEF和△BCE中,
,
∴△BEF≌△BCE(AAS),
∴CE=EF,
∴DB=2CE,即CE=BD=×4=2,
故选:B.
本题考查了全等三角形的判定与性质、角平分线定义,熟练掌握全等三角形的判定方法,全等三角形对应边相等是解题的关
5、D
【解析】
首先将各选项代入计算看是否在直线上即可.
【详解】
A 选项,当 代入 故在直线上.
B 选项,当 代入 故在直线上.
C选项,当 代入 故在直线上.
D选项,当 代入 故不在直线上.
故选D.
本题主要考查直线上的点满足直线方程,是考试的基本知识,应当熟练掌握.
6、C
【解析】
根据一次函数的性质,k<0,y随x的增大而减小,找出各选项中k值小于0的选项即可.
【详解】
解:A、B、D选项中的函数解析式k值都是正数,y随x的增大而增大,
C选项中,k=<0,y随x的增大而减少.
故选:C.
本题考查了一次函数的性质,主要利用了当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.
7、C
【解析】
解析:∵△ABC是等边三角形P是∠ABC的平分线,
∴∠EBP=∠QBF=30°,
∵BF=2,FQ⊥BP,
∴BQ=BF•cs30°=2×=,
∵FQ是BP的垂直平分线,
∴BP=2BQ=2,
在Rt△BEF中,
∵∠EBP=30°,
∴PE=BP=.
故选C.
8、C
【解析】
由图像可得:0到0.5小时行驶路程为30千米,所以速度为60km/h;0.5到1.5小时行驶路程为90千米,所以速度为80km/h;之后休息了0.5小时;2到3小时行驶路程为40千米,所以速度为40km/h;路程为150千米,用时3小时,所以平均速度为50km/h;故A、B、D选项是错误的,C选项正确.
故选C.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x<4
【解析】
观察图象,函数y=kx-3的图象位于函数y=2x+b图象的上方时对应x的取值即为不等式kx-3>2x+b的解集.
【详解】
由图象可得,当函数y=kx-3的图象位于函数y=2x+b图象的上方时对应x的取值为x<4,
∴不等式kx-3>2x+b的解集是x<4.
故答案为:x<4.
本题主要考查一次函数和一元一次不等式,解题的关键是利用数形结合思想.
10、16
【解析】
因为配方成的方程和原方程是等价的,故只要把两个方程展开合并,根据方程的每项系数相等列式求解即可求出m+n的值.
【详解】
解:由题意得: x2-mx-1=(x-3)2-n=x2-6x+9-n,
则-m=-6,∴m=6,
-1=9-n, ∴n=10,
∴m+n=10+6=16.
故答案为:16
本题考查了一元二次方程,等价方程的对应项及其系数相同,正确理解题意是解题的关键.
11、
【解析】
12、1
【解析】
多边形的内角和可以表示成(n-2)•180°,依此列方程可求解.
【详解】
依题意有:
(n﹣2)•180°=720°,
解得n=1.
故答案为:1.
本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.
13、
【解析】
根据A3,A5,A7,A9等点的坐标,可以找到角标为奇数点都在x轴上,且正负半轴的点角标以4为周期,横坐标相差相同,从而得到结果.
【详解】
解:∵A3是第一与第二个等腰直角三角形的公共点,
A5(4,0)是第二与第三个等腰直角三角形的公共点,
A7(-2,0)是第三与第四个等腰直角三角形的公共点,
A9(6,0)是第四与第五个等腰直角三角形的公共点,
A11(-4,0)是第五与第六个等腰直角三角形的公共点,
2019=1009+1
∴是第1009个与第1010个等腰直角三角形的公共点,
∵A3,A7(-2,0),A11(-4,0)
2019=505×4-1
∴在x轴负半轴…,
∴的横坐标为(505-1)×(-2)=-1008
∴(-1008,0)
本题考查的是规律,熟练掌握三角形的性质是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)当t=时,四边形ABQP是平行四边形(2)y=t+3(3)存在,当t=时,点O在线段AP的垂直平分线上
【解析】
(1)根据ASA证明△APO≌△CQO,再根据全等三角形的性质得出AP=CQ=t,则BQ=5-t,再根据平行四边形的判定定理可知当AP∥BQ,AP=BQ时,四边形ABQP是平行四边形,即t=5-t,求出t的值即可求解;
(2)过A作AH⊥BC于点H,过O作OG⊥BC于点G,根据勾股定理求出AC=4,由Rt△ABC的面积计算可求得AH=,利用三角形中位线定理可得OG=,再根据四边形OQCD的面积y= S△OCD+S△OCQ=OC·CD+CQ·OG,代入数值计算即可得y与t之间的函数关系式;
(3)如图2,若OE是AP的垂直平分线,可得AE=AP=,∠AEO=90°,根据勾股定理可得AE2+OE2=AO2,由(2)知:AO=2,OE=,列出关于t的方程,解方程即可求出t的值.
【详解】
(1)∵四边形ABCD是平行四边形,
∴OA=OC,AD∥BC,
∴∠PAO=∠QCO.
又∵∠AOP=∠COQ,
∴△APO≌△CQO,
∴AP=CQ=t.
∵BC=5,
∴BQ=5-t.
∵AP∥BQ,
当AP=BQ时,四边形ABQP是平行四边形,
即t=5-t,∴t=,
∴当t=时,四边形ABQP是平行四边形;
(2) 图1
如图1,过A作AH⊥BC于点H,过O作OG⊥BC于点G.
在Rt△ABC中,∵AB=3,BC=5,∴AC=4,
∴CO=AC=2,
S△ABC=AB·AC=BC·AH,
∴3×4=5AH,
∴AH=.
∵AH∥OG,OA=OC,
∴GH=CG,
∴OG=AH=,
∴y=S△OCD+S△OCQ=OC·CD+CQ·OG,
∴y=×2×3+×t×=t+3;
图2
(3)存在.
如图2,∵OE是AP的垂直平分线,
∴AE=AP=,∠AEO=90°,
由(2)知:AO=2,OE=,
由勾股定理得:AE2+OE2=AO2,
∴(t)2+()2=22,
∴t=或- (舍去),
∴当t=时,点O在线段AP的垂直平分线上.
故答案为(1)当t=时,四边形ABQP是平行四边形(2)y=t+3(3)存在,当t=时,点O在线段AP的垂直平分线上.
本题考查平行四边的判定与性质.
15、(1);(2)D、E两点间的距离为或1.
【解析】
(1)如图,设等E的运动速度为xcm/s.由题意AD=4cm,AE=2x.分两种情形分别构建方程即可解决问题.
(2)分两种情形利用相似三角形的性质解决问题即可.
【详解】
解:(1)如图,设等E的运动速度为xcm/s.由题意AD=4cm,AE=2x.
①当时,△ADE∽△ABC,
∴,
解得x=,
∴点E的运动速度为cm/s.
②当,△ADE∽△ACB,
∴,
∴x=,
∴点E的是的为cm/s.
(2)当△ADE∽△ABC时,,
∴,
∴DE=,
当△ADE∽△ACB时,,
∴,
∴DE=1,
综上所述,D、E两点间的距离为或1.
本题考查相似三角形的判定和性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.
16、.(1)k=-1,b=1 (1)-1
【解析】
(1)由图可直接写出的坐标,将这两点代入联立求解可得出和的值;
(1)由(1)的关系式,将代入可得出函数值.
【详解】
解:(1)由图可得:A(-1,3),B(1,-3),
将这两点代入一次函数y=kx+b得:,
解得:
∴k=-1,b=1;
(1)将x=代入y=-1x+1得:y=-1.
本题考查待定系数法求一次函数解析式,关键在于看出图示的坐标信息.
17、 (1)、、;(2); (3); (4)
【解析】
(1)根据多项式乘多项式的乘法计算可得;
(2)利用(1)中已知等式得出该等式的结果为a、b两数n次幂的差;
(3)将原式变形为,再利用所得规律计算可得;
(4)将原式变形为,再利用所得规律计算可得.
【详解】
(1)第1个:;
第2个:;
第3个:;
故答案为:、、;
(2)若n为大于1的正整数,
则,
故答案为:;
(3)
,
故答案为:;
(4)
,
故答案为:.
本题考查了多项式乘以多项式以及平方差公式,观察等式发现规律是解题关键.
18、(1)见解析;(2)见解析
【解析】
(1)根据题意画图即可补全图形;
(2)由平行四边形的性质可得,,再根据平行线的性质可得,进而可根据ASA证明,进一步即可根据全等三角形的性质得出结论.
【详解】
解:(1)补全图形如图所示:
(2)证明:∵四边形为平行四边形,
∴,,
∴,
又∵,
∴(ASA),
∴.
本题考查了按题意画图、平行四边形的性质和全等三角形的判定和性质等知识,属于基本题型,熟练掌握平行四边形的性质和全等三角形的判定和性质是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
连接OE,与DC交于点F,由四边形ABCD为矩形得到对角线互相平分且相等,进而得到OD=OC,再由两组对边分别平行的四边形为平行四边形得到OCED为平行四边形,根据邻边相等的平行四边形为菱形得到四边形OCED为菱形,得到对角线互相平分且垂直,求出菱形OCED的面积即可.
【详解】
解:连接OE,与DC交于点F,
∵四边形ABCD为矩形,
∴OA=OC,OB=OD,且AC=BD,即OA=OB=OC=OD,AB=CD,
∵OD∥CE,OC∥DE,
∴四边形ODEC为平行四边形,
∵OD=OC,
∴四边形OCED为菱形,
∴DF=CF,OF=EF,DC⊥OE,
∵DE∥OA,且DE=OA,
∴四边形ADEO为平行四边形,
∵AD=,AB=2,
∴OE=,CD=2,
则S菱形OCED=OE•DC=××2=.
故答案为:.
本题考查矩形的性质,菱形的判定与性质,以及勾股定理,熟练掌握矩形的性质是解题的关键.
20、128
【解析】
由题意可以知道第一个正方形的边长为1,第二个正方形的边长为 ,第三个正方形的边长为2,就有第n个正方形的边长为(n-1),再根据正方形的面积公式就可以求出结论.
【详解】
第一个正方形的面积为1,故其边长为1=2;
第二个正方形的边长为,其面积为2=2;
第三个正方形的边长为2,其面积为4=2;
第四个正方形的边长为2,其面积为8=2;
…
第n个正方形的边长为(),其面积为2.
当n=8时,
S=2,
=2=128.
故答案为:128.
此题考查正方形的性质,解题关键在于找到规律.
21、1
【解析】
根据直角三角形斜边上的中线等于斜边的一半解答.
【详解】
∵∠ACB=90°,D为AB的中点,
∴CD=AB=×6=1.
故答案为1.
本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.
22、4或1
【解析】
分别利用,当MN∥BC时,以及当∠ANM=∠B时,分别得出相似三角形,再利用相似三角形的性质得出答案.
【详解】
如图1,当MN∥BC时,
则△AMN∽△ABC,
故,
则,
解得:MN=4,
如图2所示:当∠ANM=∠B时,
又∵∠A=∠A,
∴△ANM∽△ABC,
∴,
即,
解得:MN=1,
故答案为:4或1.
此题主要考查了相似三角形判定,正确利用分类讨论得出是解题关键.
23、y=3x-1
【解析】
解:设函数解析式为y+1=kx,
∴1k=4+1,
解得:k=3,
∴y+1=3x,
即y=3x-1.
二、解答题(本大题共3个小题,共30分)
24、(1)80,0.100;(2)见解析;(3)1.
【解析】
(1)总人数乘以0.2,即可得到a,40除以总人数,即可得到b;
(2)根据(1)中的计算结果和表中信息,补全频数分布直方图,即可;
(3)学校总人数×周人均阅读时间不少于6小时的学生的百分比,即可求解.
【详解】
(1)a=400×0.200=80,b=40÷400=0.100;
故答案为:80,0.100;
(2)补全频数分布直方图,如图所示:
(3)1600×=1(人),
答:该校学生周人均阅读时间不少于6小时的学生大约有1人,
故答案为:1.
本题主要考查频数分布直方图、频数分布表,掌握频数分布直方图、频数分布表的特征,把它们的数据结合起来,是解题的关键.
25、证明见解析.
【解析】
由矩形的性质得出,,证出四边形是矩形,再证明,即可得出四边形是正方形;
【详解】
证明:四边形是矩形,
,,
,
,
四边形是矩形,
平分,,
,
,
四边形是正方形.
本题考查了矩形的性质与判定、正方形的判定与性质等知识;熟练掌握矩形的性质,证明四边形是正方形是解决问题的关键.
26、
【解析】
首先按照乘法分配律将原式变形,然后根据分式的基本性质进行约分,再去括号,合并同类项即可进行化简,然后将x的值代入化简后的式子中即可求解.
【详解】
原式=
当时,原式.
本题主要考查分式的化简求值,掌握分式的基本性质是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
周人均阅读时间x
(小时)
频数
频率
0≤x<2
10
0.025
2≤x<4
60
0.150
4≤x<6
a
0.200
6≤x<8
110
0.275
8≤x<10
100
0.250
10≤x<12
40
b
合计
400
1.000
相关试卷
这是一份2025届江苏省无锡市江阴市南菁高中学实验学校九上数学开学预测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届江苏省无锡江阴市南菁实验学校数学九上开学监测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江苏省无锡市江阴市南菁高中学实验学校九年级数学第一学期开学预测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。