2025届江苏省淮安市凌桥乡初级中学数学九上开学质量跟踪监视模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知m2-n2=mn,则的值等于( )
A.1B.0C.-1D.-
2、(4分)下列交通标志中,是中心对称图形的是( )
A.B.C.D.
3、(4分)如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )
A.7,24,25B.,,C.6,8,10D.9,12,15
4、(4分)去年某市7月1日到7日的每一天最高气温变化如折线图所示,则关于这组数据的描述正确的是( )
A.最低温度是32℃B.众数是35℃C.中位数是34℃D.平均数是33℃
5、(4分)下列各式从左到右是分解因式的是( )
A.a(x+y)=ax+ay
B.10x2﹣5x=5x(2x﹣1)
C.8m3n=2m3•4n
D.t2﹣16+3t=(t+4)(t﹣4)+3t
6、(4分)函数y=中,自变量x的取值范围在数轴上表示正确的是( )
A.B.C.D.
7、(4分)下列调查中,适宜采用普查方式的是( )
A.调查一批新型节能灯泡的使用寿命
B.调查常熟市中小学生的课外阅读时间
C.对全市中学生观看电影《厉害了,我的国》情况的调查
D.对卫星“张衡一号”的零部件质量情况的调查
8、(4分)如图,已知的顶点A、C分别在直线和上,O是坐标原点,则对角线OB长的最小值为( )
A.4B.5C.6D.7
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在四边形ABCD中,对角线AC,BD交于点O,且OA=OC,OB=OD,要使四边形ABCD为矩形,则需要添加的条件是_______(只填一个即可).
10、(4分)如图,平行四边形ABCD中,AC⊥AB,点E为BC边中点,AD=6,则AE的长为________.
11、(4分)如果向量,那么四边形的形状可以是_______________(写出一种情况即可)
12、(4分)如图,菱形ABCD的周长是20,对角线AC、BD相交于点O.若BO=3,则菱形ABCD的面积为______.
13、(4分)一个三角形的底边长为5,高为h可以任意伸缩.写出面积S随h变化的函数解析式_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)某中学九年级1班同学积极响应“阳光体育工程”的号召,利用课外活动时间积极参加体育锻炼,每位同学从长跑、篮球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试. 现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表.
项目选择统计图
训练后篮球定时定点投篮测试进球统计表
请你根据图表中的信息回答下列问题:
(1)选择长跑训练的人数占全班人数的百分比是___________,该班共有同学___________人;
(2)求训练后篮球定时定点投篮人均进球数;
(3)根据测试资料,训练后篮球定时定点投篮的人均进球数比训练之前人均进球数增加25%. 请求出参加训练之前的人均进球数.
15、(8分)(1)如图1,在矩形中,对角线与相交于点,过点作直线,且交于点,交于点,连接,且平分.
①求证:四边形是菱形;
②直接写出的度数;
(2)把(1)中菱形进行分离研究,如图2,分别在边上,且,连接为的中点,连接,并延长交于点,连接.试探究线段与之间满足的关系,并说明理由;
(3)把(1)中矩形进行特殊化探究,如图3,矩形满足时,点是对角线上一点,连接,作,垂足为点,交于点,连接,交于点.请直接写出线段三者之间满足的数量关系.
16、(8分)已知反比例函数为常数,且).
(1)若在其图像的每个分支上,随的增大而增大,求的取值范围.
(2)若其图象与一次函数y=−x+1图象的一个交点的纵坐标是3,求m的值。
17、(10分)如图,折叠长方形一边AD,点D落在BC边的点F处,BC=10cm,AB=8cm.
求:(1)FC的长;(2)EF的长.
18、(10分)已知关于x的方程x2﹣(2k+1)x+4(k﹣)=0
(1)求证:无论k取何值,这个方程总有实数根;
(2)若等腰三角形ABC的一边长a=4,另两边b、c恰好是这个方程的两个根,求△ABC的周长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,直线经过点和点,直线经过点,则不等式组的解集是______.
20、(4分)已知m是方程x2﹣2018x+1=0的一个根,则代数式m2﹣2017m++3的值等于_____.
21、(4分)如图,一次函数y=kx+b的图象经过A、B两点,与x轴交于点C,则此一次函数的解析式为__________,△AOC的面积为_________.
22、(4分)若点P(3,2)在函数y=3x-b的图像上,则b=_________.
23、(4分)若关于的方程的解为正数,则的取值范围是__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,▱ABCD在平面直角坐标系中,点A(﹣2,0),点B(2,0),点D(0,3),点C在第一象限.
(1)求直线AD的解析式;
(2)若E为y轴上的点,求△EBC周长的最小值;
(3)若点Q在平面直角坐标系内,点P在直线AD上,是否存在以DP,DB为邻边的菱形DBQP?若存在,求出点P的坐标;若不存在,请说明理由.
25、(10分)某超市出售甲、乙、丙三种糖果,其售价分别为5元/千克,12元/千克,20元/千克,为满足客多样化需求,超市打算把糖果混合成杂拌糖出售,如果按照如图所示的扇形统计图中甲、乙、丙三种糖果的比例混合,这种新混合的杂排糖的售价应该为多少元/千克?
26、(12分)我县某中学开展“庆十一”爱国知识竞赛活动,九年级(1)、(2)班各选出名选手参加比赛,两个班选出的名选手的比赛成绩(满分为100分)如图所示。
(1)根据图示填写如表:
(2)请你计算九(1)和九(2)班的平均成绩各是多少分。
(3)结合两班竞赛成绩的平均数和中位数,分析哪个班级的竞赛成绩较好
(4)请计算九(1)、九(2)班的竞赛成绩的方差,并说明哪个班的成绩比较稳定?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据分式的运算法则即可求出答案.
【详解】
解:∵m2-n2=mn,且mn≠0,
∴,
即,
故选:C.
本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.
2、D
【解析】
根据中心对称图形的概念判断即可.
【详解】
A、不是中心对称图形;
B、不是中心对称图形;
C、不是中心对称图形;
D、是中心对称图形.
故选D.
本题考查的是中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
3、B
【解析】
根据勾股定理的逆定理,计算每个选项中两个较小数的平方的和是否等于最大数的平方,等于则能组成直角三角形,不等于则不能组成直角三角形.
【详解】
A. ,能组成直角三角形,故此选项错误;
B. ,不能组成直角三角形,故此选项正确;
C. ,能组成直角三角形,故此选项错误;
D. ,能组成直角三角形,故此选项错误;
故选:B.
本题考查了勾股定理逆定理,解答此题关键是掌握勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.
4、D
【解析】
分析:将数据从小到大排列,由中位数及众数、平均数的定义,可得出答案.
详解:由折线统计图知这7天的气温从低到高排列为:31、32、33、33、33、34、35,所以最低气温为31℃,众数为33℃,中位数为33℃,平均数是=33℃.
故选D.
点睛:本题考查了众数、中位数的知识,解答本题的关键是由折线统计图得到最高气温的7个数据.
5、B
【解析】
根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.
【详解】
解:A、是整式的乘法,故A错误;
B、把一个多项式转化成几个整式积的形式,故B符合题意;
C、是乘法交换律,故C不符合题意;
D、没把一个多项式转化成几个整式积的形式,故D不符合题意;
故选B.
本题考查了因式分解的意义,利用因式分解的意义是解题关键.
6、B
【解析】
根据函数y=可得出x-1≥0,再解出一元一次不等式即可.
【详解】
由题意得,x-1≥0,
解得x≥1.
在数轴上表示如下:
故选B.
本题要考查的是一元一次不等式的解法以及二次根式成立得出判定,熟练掌握一元一次不等式的解法是本题的解题关键.
7、D
【解析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.
【详解】
A.调查一批新型节能灯泡的使用寿命适合抽样调查;
B.调查盐城市中小学生的课外阅读时间适合抽样调查;
C.对全市中学生观看电影《流浪地球》情况的调查适合抽样调查;
D.对量子通信卫星的零部件质量情况的调查必须进行全面调查,
故选D.
本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
8、B
【解析】
当B在x轴上时,对角线OB长度最小,由题意得出∠ADO=∠CED=90°,OD=1,OE=4,由平行四边形的性质得出OA∥BC,OA=BC,得出∠AOD=∠CBE,由AAS证明△AOD≌△CBE,得出OD=BE=1,即可得出结果.
【详解】
当B在x轴上时,对角线OB长度最小,如图所示:
直线x=1与x轴交于点D,直线x=4与x轴交于点E,
根据题意得:∠ADO=∠CEB=90°,OD=1,OE=4,
四边形ABCD是平行四边形,
∴OA∥BC,OA=BC,
∴∠AOD=∠CBE,
在△AOD和△CBE中,
,
∴△AOD≌△CBE(AAS),
∴OD=BE=1,
∴OB=OE+BE=5,
故答案为:5.
本题考查了平行四边形的性质、坐标与图形性质、全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、∠DAB=90°.
【解析】
根据对角线互相平分线的四边形为平行四边形可得四边形ABCD是平行四边形,添加条件∠DAB=90°可根据有一个角是直角的平行四边形是矩形进行判定.
【详解】
解:可以添加条件∠DAB=90°,
∵AO=CO,BO=DO,
∴四边形ABCD是平行四边形,
∵∠DAB=90°,
∴四边形ABCD是矩形,
故答案为∠DAB=90°.
此题主要考查了矩形的判定,关键是掌握矩形的判定定理.
10、1
【解析】
由平行四边形的性质得出BC=AD=6,由直角三角形斜边上的中线性质即可得出结果.
【详解】
∵四边形ABCD是平行四边形,
∴BC=AD=6,
∵E为BC的中点,AC⊥AB,
∴AE=BC=1,
故答案为:1.
本题考查了平行四边形的性质、直角三角形斜边上的中线性质;熟练掌握平行四边形的性质,由直角三角形斜边上的中线性质求出AE是解决问题的关键.
11、平行四边形
【解析】
根据相等向量的定义和四边形的性质解答.
【详解】
如图:
∵=,
∴AD∥BC,且AD=BC,
∴四边形ABCD的形状可以是平行四边形.
故答案为:平行四边形.
此题考查了平面向量,掌握平行四边形的判定定理(有一组对边平行且相等的四边形是平行四边形)是解题的关键.
12、24
【解析】
由菱形的性质可得AB=5,AC⊥BD,AO=CO,BO=DO=3,由勾股定理可求AO=4,由菱形的面积公式可求解.
【详解】
解:∵菱形ABCD的周长是20,
∴AB=5,AC⊥BD,AO=CO,BO=DO=3,
∴AO==4
∴AC=8,BD=6
∴菱形ABCD的面积=AC×BD=24,
故答案为:24
本题考查了菱形的性质,熟练运用菱形的性质是本题的关键.
13、
【解析】
直接利用三角形面积求法得出函数关系式.
【详解】
解:∵一个三角形的底边长为5,高为h可以任意伸缩,
∴面积S随h变化的函数解析式为:S=h•5=h.
故答案为S=h.
此题主要考查了函数关系式,正确记忆三角形面积是解题关键.
三、解答题(本大题共5个小题,共48分)
14、(1)10%,40;(2)5;(3)参加训练前的人均进球数为4个.
【解析】
(1)根据选择长跑训练的人数等于1减去其他人数占的比例,根据训练篮球的人数=2+1+4+7+8+2=24人,求出全班人数;
(2)根据平均数的概念求进球平均数;
(3)设参加训练前的人均进球数为x个,得到方程:(1+25%)x=5,解出即可.
【详解】
解:(1)(1)选择长跑训练的人数占全班人数的百分比=1-60%-10%-20%=10%;
训练篮球的人数=2+1+4+7+8+2=24人,
∴全班人数=24÷60%=40;
(2)
(3)解:设参加训练前的人均进球数为个,由题意得:
解得:.
答:参加训练前的人均进球数为4个.
此题考查加权平均数,一元一次方程的应用,扇形统计图,解题关键在于看懂图中数据.
15、 (1)①见解析;②60°;(1)见解析;(3)见解析.
【解析】
(1)①由△DOE≌△BOF,推出EO=OF,由OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可;②先证明∠ABD=1∠ADB,推出∠ADB=30°,即可解决问题;
(1)延长到,使得,连接,由菱形性质,,得,由此,由ASA可证得,由此,故
,由,可证得是等边三角形,可得,,由SAS可证,可得,即是等边三角形,
在中,由,,可得,由此可得;
(3)结论:EG1=AG1+CE1.如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,先证明△DEG≌△DEM,再证明△ECM是直角三角形即可解决问题.
【详解】
(1)①证明:如图1中,
∵四边形是矩形,
∴,
∴,
在和中,
,
∴,
∴,
∵,
∴四边形是平行四边形,
∵,
∴,
∴四边形是菱形.
②∵四边形是菱形,
∴,
∵平分,
∴,
∴=,
∵四边形是矩形,
∴A=,
∴+=,
∴==,
∴;
(1)结论:.
理由:如图1中,延长到,使得,连接.
∵四边形是菱形,,
∴,
∴,
在和中,
,
∴,
∴,
∴,
∴,
∵,
∴是等边三角形,
∴,
在和中,
,
∴,
∴,,
∵,
∴,
∵,
∴,
∴,
∴是等边三角形,
在中,∵,,
∴,
∴.
(3)结论:.
理由:如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,
∵∠FAD+∠DEF=90°,
∴AFED四点共圆,
∴∠EDF=∠DAE=45°,∠ADC=90°,
∴∠ADF+∠EDC=45°,
∵∠ADF=∠CDM,
∴∠CDM+∠CDE=45°=∠EDG,
在△DEM和△DEG中,
,
∴△DEG≌△DEM,
∴GE=EM,
∵∠DCM=∠DAG=∠ACD=45°,AG=CM,
∴∠ECM=90°,
∴EC1+CM1=EM1,
∵EG=EM,AG=CM,
∴GE1=AG1+CE1.
本题考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题,属于中考压轴题.
16、(1)m<5;(2)m=-1
【解析】
(1)由反比例函数y= 的性质:当k<0时,在其图象的每个分支上,y随x的增大而增大,进而可得:m-5<0,从而求出m的取值范围;
(2)先将交点的纵坐标y=3代入一次函数y=-x+1中求出交点的横坐标,然后将交点的坐标代入反比例函数y= 中,即可求出m的值.
【详解】
(1)∵在反比例函数y=图象的每个分支上,y随x的增大而增大,
∴m−5<0,
解得:m<5;
(2)将y=3代入y=−x+1中,得:x=−2,
∴反比例函数y=图象与一次函数y=−x+1图象的交点坐标为:(−2,3).
将(−2,3)代入y=得:
3=
解得:m=−1.
此题考查反比例函数与一次函数的交点问题,解题关键在于反比例函数的性质进行解答
17、 (1)4cm;(2)5cm.
【解析】
(1)由于△ADE翻折得到△AEF,所以可得AF=AD,则在Rt△ABF中,由勾股定理即可得出结论;
(2)由于EF=DE,可设EF的长为x.在Rt△EFC中,利用勾股定理即可得出结论.
【详解】
(1)由题意可得:AF=AD=10cm.在Rt△ABF中,∵AB=8 cm,∴BF=6cm,∴FC=BC﹣BF=10﹣6=4(cm).
(2)由题意可得:EF=DE,可设DE的长为x,则在Rt△EFC中,(8﹣x)2+42=x2,解得:x=5,即EF的长为5cm.
本题考查了矩形的性质以及翻折的问题,能够熟练运用矩形的性质求解一些简答的问题.
18、(1)证明见解析;(2)2.
【解析】
试题分析:(1)先把方程化为一般式:x2﹣(2k+1)x+4k﹣2=0,要证明无论k取任何实数,方程总有两实数根,即要证明△≥0;
(2)先利用因式分解法求出两根:x1=2,x2=2k﹣1.先分类讨论:若a=4为底边;若a=4为腰,分别确定b,c的值,求出三角形的周长.
试题解析:(1)证明:方程化为一般形式为:x2﹣(2k+1)x+4k﹣2=0,
∵△=(2k+1)2﹣4(4k﹣2)=(2k﹣3)2,
而(2k﹣3)2≥0,
∴△≥0,
所以无论k取任何实数,方程总有两个实数根;
(2)解:x2﹣(2k+1)x+4k﹣2=0,
整理得(x﹣2)[x﹣(2k﹣1)]=0,
∴x1=2,x2=2k﹣1,
当a=4为等腰△ABC的底边,则有b=c,
因为b、c恰是这个方程的两根,则2=2k﹣1,
解得k=,则三角形的三边长分别为:2,2,4,
∵2+2=4,这不满足三角形三边的关系,舍去;
当a=4为等腰△ABC的腰,
因为b、c恰是这个方程的两根,所以只能2k﹣1=4,
则三角形三边长分别为:2,4,4,
此时三角形的周长为2+4+4=2.
所以△ABC的周长为2.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
解不等式2x<kx+b<0的解集,就是指函数图象在A,B之间的部分的自变量的取值范围.
【详解】
解:根据题意得到y=kx+b与y=2x交点为A(-1,-2),
解不等式2x<kx+b<0的解集,就是指函数图象在A,B之间的部分,
又B(-2,0),
此时自变量x的取值范围,是-2<x<-1.
即不等式2x<kx+b<0的解集为:-2<x<-1.
故答案为:-2<x<-1.
本题主要考查一次函数与一元一次方程及一元一次不等式之间的内在联系.根据函数图象即可得到不等式的解集.
20、1
【解析】
利用m是方程x2﹣2018x+1=0的一个根得到m2=2018m﹣1,m2+1=2018m,利用整体代入的方法得到原式=m++2,然后通分后再利用整体代入的方法计算.
【详解】
解:∵m是方程x2﹣2018x+1=0的一个根,
∴m2﹣2018m+1=0,
∴m2=2018m﹣1,m2+1=2018m,
∴m2﹣2017m++3=2018m﹣1﹣2017m++3
=m++2
=+2
=+2
=2018+2
=1.
故答案为:1.
本题考查一元二次方程的解得定义,代数式求值,分式的加减.掌握整体思想,整体代入是解题关键.
21、y=x+2 1
【解析】
一次函数y=kx+b的图象经过A、B两点,即A(2,1),B(0,2),代入可求出函数关系式.再根据三角形的面积公式,得出△AOC的面积.
【详解】
解:一次函数y=kx+b的图象经过A、B两点,即A(2,1),B(0,2),
与x轴交于点C(-2,0),
根据一次函数解析式的特点,可得出方程组,解得
则此一次函数的解析式为y=x+2,
△AOC的面积=|-2|×1÷2=1.
则此一次函数的解析式为y=x+2,△AOC的面积为1.
故答案为:y=x+2;1.
本题考查的是待定系数法求一次函数的解析式,解答本题的关键是掌握点在函数解析式上,点的横纵坐标就适合这个函数解析式.
22、1
【解析】
∵点P(3,2)在函数y=3x-b的图象上,
∴2=3×3-b,
解得:b=1.
故答案是:1.
23、且
【解析】
首先去分母化成整式方程,求得x的值,然后根据方程的解大于0,且x-1≠0即可求得m的范围.
【详解】
解:去分母,得1x+m=3(x-1),
去括号,得1x+m=3x-3,
解得:x=m+3,
根据题意得:m+3-1≠0且m+3>0,
解得:m>-3且m≠-1.
故答案是:m>-3且m≠-1.
本题考查了分式方程的解,注意:忽视x-1≠0是本题的易错点.
二、解答题(本大题共3个小题,共30分)
24、(1);(2)△EBC周长的最小值为;(1)满足条件的点P坐标为(﹣2,0)或(2,6).
【解析】
(1)设直线AD的解析式为y=kx+b,把A、D两点坐标代入,把问题转化为解方程组即可;
(2)因为A、B关于y轴对称,连接AC交y轴于E,此时△BEC的周长最小;
(1)分两种情形分别讨论求解即可解决问题;
【详解】
.解:(1)设直线AD的解析式为y=kx+b,
把A(﹣2,0),D(0,1)代入y=kx+b,得到 ,
解得 ,
∴直线AD的解析式为y=x+1.
(2)如图1中,∵A(﹣2,0),B(2,0),
∴A、B关于y轴对称,
连接AC交y轴于E,此时△BEC的周长最小,
周长的最小值=EB+EC+BC=EA+EC+BC=AC+BC,
∵A(﹣2,0),C(4,1),B(2,0),
∴AC= ,
∴△EBC周长的最小值为: .
(1)如图2中,
①当点P与A重合时,四边形DPQB是菱形,此时P(﹣2,0),
②当点P′在AD的延长线上时,DP′=AD,此时四边形BDP′Q是菱形,此时P′(2,6).
综上所述,满足条件的点P坐标为(﹣2,0)或(2,6);
本题考查一次函数综合题、平行四边形的性质、菱形的判定和性质、轴对称最短问题、待定系数法等知识,解题的关键是学会利用轴对称解决最短问题,学会用分类讨论的思想思考问题,属于中考压轴题.
25、这种新混合的杂排糖的售价应该为10.1元/千克.
【解析】
由扇形统计图中可以得到甲、乙、丙三种糖果所占的比例,然后根据加权平均数的计算方法求出结果即可.
【详解】
丙对应的百分比为1-50%-30%=20%
∴这种新混合物的杂拌糖的售价应该为5×50%+12×30%+20×20%=10.1(元/千克)
答:这种新混合的杂排糖的售价应该为10.1元/千克.
考查扇形统计图的特征、加权平均数的计算方法,明确和理解加权平均数中“权”是正确解答的前提.
26、(1);(2)甲:85,乙:85;(3)九(1)班成绩较好;(4)九(1)班成绩比较稳定.
【解析】
(1)观察图分别写出九(1)班和九(2)班5名选手的比赛成绩,然后根据中位数和众数的定义求解即可;(2)根据平均数公式计算即可;(3)在平均数相同的情况下,中位数较高的成绩较好;(4)先根据方差公式分别计算两个班比赛成绩的方差,再根据方差的意义判断即可.
【详解】
由图可知:九(1)班5位同学的成绩分别为:75,80,85,85,100,所以中位数为85,众数为85;九(2)班5位同学的成绩分别为:70,100,100,75,80,排序为:70,75,80,100,100,所以中位数为80,众数为100,即填表如下:
(2)九(1)班的平均成绩为(分),
九(2)班的平均成绩为(分);
(3)因为两个班级的平均数都相同,九(1)班的中位数较高,所以在平均数相同的情况下中位数较高的九(1)班成绩较好;
(4);
因为
所以九(1)班成绩比较稳定.
本题考查了平均数、中位数、众数和方差的意义即运用.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
题号
一
二
三
四
五
总分
得分
批阅人
进球数(个)
8
7
6
5
4
3
人数
2
1
4
7
8
2
班级
中位数(分)
众数(分)
九(1)
85
九(2)
80
班级
中位数(分)
众数(分)
九(1)
85
85
九(2)
80
100
2024年上海市复旦初级中学数学九上开学质量跟踪监视试题【含答案】: 这是一份2024年上海市复旦初级中学数学九上开学质量跟踪监视试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年湖北省黄冈市初级中学数学九上开学质量跟踪监视模拟试题【含答案】: 这是一份2024年湖北省黄冈市初级中学数学九上开学质量跟踪监视模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年河南省鹿邑城郊乡阳光中学数学九上开学质量跟踪监视试题【含答案】: 这是一份2024-2025学年河南省鹿邑城郊乡阳光中学数学九上开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。