2025届江苏省南京溧水区四校联考数学九年级第一学期开学学业水平测试试题【含答案】
展开
这是一份2025届江苏省南京溧水区四校联考数学九年级第一学期开学学业水平测试试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)从、、、这四个代数式中任意抽取一个,下列事件中为确定事件的是( )
A.抽到的是单项式B.抽到的是整式
C.抽到的是分式D.抽到的是二次根式
2、(4分)某市为解决部分市民冬季集中取暖问题,需铺设一条长4000米的管道,为尽量减少施工对交通造成的影响,施工时“…”,设实际每天铺设管道x米,则可得方程=20,根据此情景,题中用“…”表示的缺失的条件应补为( )
A.每天比原计划多铺设10米,结果延期20天完成
B.每天比原计划少铺设10米,结果延期20天完成
C.每天比原计划多铺设10米,结果提前20天完成
D.每天比原计划少铺设10米,结果提前20天完成
3、(4分)若分式有意义,则x满足的条件是( )
A.x≠1的实数B.x为任意实数C.x≠1且x≠﹣1的实数D.x=﹣1
4、(4分)生物刘老师对本班50名学生的血型进行了统计,列出如下统计表,则本班O型血的有( )
A.17人B.15人C.13人D.5人
5、(4分)已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为( )
A.B.C.D.
6、(4分)如图,菱形ABCD中,对角线BD与AC交于点O, BD=8cm,AC=6cm,过点O作OH⊥CB于点H,则OH的长为( )
A.5cmB.cm
C.cmD.cm
7、(4分)下列事件属于必然事件的是()
A.抛掷两枚硬币,结果一正一反
B.取一个实数的值为 1
C.取一个实数
D.角平分线上的点到角的两边的距离相等
8、(4分)如图,已知函数y=x+1和y=ax+3图象交于点P,点P的横坐标为1,则关于x,y的方程组的解是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若<0,则代数式可化简为_____.
10、(4分)如图,在中,,、分别是、的中点,延长到点,使,则_____________.
11、(4分)在Rt△ABC中,∠C=90°,AC=3,BC=1.作一边的垂直平分线交另一边于点D,则CD的长是______.
12、(4分)已知关于x的方程x2+mx-2=0的两个根为x1、x2,若x1+x2-x1x2=6,则m=______.
13、(4分)如图,菱形ABCD的对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=10cm,则OE的长为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,△ABC中,AB=AC,∠BAC=90°,点D,E分别在AB,BC上,∠EAD=∠EDA,点F为DE的延长线与AC的延长线的交点.
(1)求证:DE=EF;
(2)判断BD和CF的数量关系,并说明理由;
(3)若AB=3,AE=,求BD的长.
15、(8分)某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.
(1)甲、乙工程队每天各能铺设多少米?
(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的方案有几种?请你帮助设计出来.
16、(8分)如图,在正方形ABCD中,点E,F分别在边AB,BC上,AF与DE相交于点M,且∠BAF=∠ADE.
(1)如图1,求证:AF⊥DE;
(2)如图2,AC与BD相交于点O,AC交DE于点G,BD交AF于点H,连接GH,试探究直线GH与AB的位置关系,并说明理由;
(3)在(1)(2)的基础上,若AF平分∠BAC,且BDE的面积为4+2,求正方形ABCD的面积.
17、(10分)阅读例题,解答下题.
范例:解方程: x2 + ∣x +1∣﹣1= 0
解:(1)当 x+1 ≥ 0,即 x ≥ ﹣1时,
x2 + x +1﹣1= 0
x2 + x = 0
解得 x 1 = 0 ,x2 =﹣1
(2)当 x+1 < 0,即 x < ﹣1时,
x2 ﹣ ( x +1)﹣1= 0
x2﹣x ﹣2= 0
解得x 1 =﹣1 ,x2 = 2
∵ x < ﹣1,∴ x 1 =﹣1,x2 = 2 都舍去.
综上所述,原方程的解是x1 = 0,x2 =﹣1
依照上例解法,解方程:x2﹣2∣x-2∣-4 = 0
18、(10分)某河道A,B两个码头之间有客轮和货轮通行一天,客轮从A码头匀速行驶到B码头,同时货轮从
B码头出发,运送一批建材匀速行驶到A码头两船距B码头的距离千米与行驶时间分之间的函数关系
如图所示请根据图象解决下列问题:
分别求客轮和货轮距B码头的距离千米、千米与分之间的函数关系式;
求点M的坐标,并写出该点坐标表示的实际意义.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分) “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若,大正方形的面积为13,则小正方形的面积为________.
20、(4分)已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=_____.
21、(4分)若关于x的分式方程=有增根,则m的值为_____.
22、(4分)在平面直角坐标系中,点到坐标原点的距离是______.
23、(4分)今年我市有5万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,在这个调查中样本容量是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.
(1)求证:OM=ON;
(2)若正方形ABCD的边长为6,OE=EM,求MN的长.
25、(10分)为创建“国家园林城市”,某校举行了以“爱我黄石”为主题的图片制作比赛,评委会对200名同学的参赛作品打分发现,参赛者的成绩x均满足50≤x<100,并制作了频数分布直方图,如图.
根据以上信息,解答下列问题:
(1)请补全频数分布直方图;
(2)若依据成绩,采取分层抽样的方法,从参赛同学中抽40人参加图片制作比赛总结大会,则从成绩80≤x<90的选手中应抽多少人?
(3)比赛共设一、二、三等奖,若只有25%的参赛同学能拿到一等奖,则一等奖的分数线是多少?
26、(12分)如图,在直角坐标系中,已知点O,A的坐标分别为(0,0),(﹣3,﹣2).
(1)点B的坐标是 ,点B与点A的位置关系是 .现将点B,点A都向右平移5个单位长度分别得到对应点C和D,顺次连接点A,B,C,D,画出四边形ABCD;
(2)横、纵坐标都是整数的点成为整数点,在四边形ABCD内部(不包括边界)的整数点M使S△ABM=8,请直接写出所有点M的可能坐标;
(3)若一条经过点(0,﹣4)的直线把四边形ABCD的面积等分,则这条直线的表达式是 ,并在图中画出这条直线.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据题意找出下列事件中为确定事件,掌握单项式、整式、分式、二次根式的定义以此分析选项,采用排除法得出最终正确选项.
【详解】
A. 不是单项式,错误;
B. 不是整式,错误;
C.、、不是分式,错误;
D. 、、、都是二次根式,正确.
故选D.
此题考查单项式、整式、分式、二次根式,解题关键在于掌握单项式、整式、分式、二次根式的定义.
2、C
【解析】
由给定的分式方程,可找出缺失的条件为:每天比原计划多铺设10米,结果提前20天完成.此题得解.
【详解】
解:∵利用工作时间列出方程: ,
∴缺失的条件为:每天比原计划多铺设10米,结果提前20天完成.
故选:C.
本题考查了由实际问题抽象出分式方程,由列出的分式方程找出题干缺失的条件是解题的关键.
3、A
【解析】
直接利用分式有意义的条件得出:x﹣1≠0,解出答案.
【详解】
解:∵分式有意义,
∴x﹣1≠0,
解得:x≠1.
∴x满足的条件是:x≠1的实数.
故选A.
此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.
4、D
【解析】
频率是指每个对象出现的次数与总次数的比值(或者百分比).即频率=频数÷总数.
【详解】
解:本班O型血的有:50×0.1=5(人),
故选:D.
本题考查了频率与频数,正确理解频率频数的意义是解题的关键.
5、C
【解析】
由折叠的性质可得DE=BE,
设AE=xcm ,则BE=DE=(9-x)cm,
在Rt中,由勾股定理得:32+ x2=(9-x)2
解得:x=4,
∴AE=4cm,
∴S△ABE=×4×3=6(cm2),
故选C.
6、C
【解析】
根据菱形的对角线互相垂直平分求出OB、OC,再利用勾股定理列式求出BC,然后根据△BOC的面积列式计算即可得解.
【详解】
解:∵四边形ABCD是菱形,
∴AC⊥BD,
在Rt△BOC中,由勾股定理得,
∵OH⊥BC,
∴
∴
故选C.
本题考查了菱形的性质,勾股定理,三角形的面积,熟记性质是解题的关键,难点在于利用两种方法表示△BOC的面积列出方程.
7、D
【解析】
必然事件就是一定发生的事件,据此判断即可解答.
【详解】
A、可能会出现两正,两反或一正一反或一反一正等4种情况,故错误,不合题意;
B、x应取不等于0的数,故错误,不合题意;
C、取一个实数,故错误,不合题意;
D、正确,属于必然事件,符合题意;
故选:D.
本题考查了必然事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
8、A
【解析】
先把x=1代入y=x+1,得出y=2,则两个一次函数的交点P的坐标为(1,2);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.
【详解】
解:把x=1代入y=x+1,得出y=2,
函数y=x+1和y=ax+3的图象交于点P(1,2),
即x=1,y=2同时满足两个一次函数的解析式.
所以关于x,y的方程组的解是.
故选:A.
考查了一次函数与二元一次方程组的联系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
二次根式有意义,就隐含条件b>1,由ab<1,先判断出a、b的符号,再进行化简即可.
【详解】
若ab<1,且代数式有意义;
故有b>1,a<1;
则代数式=|a|=-a.
故答案为:-a.
本题主要考查二次根式的化简方法与运用:当a>1时,=a;当a<1时,=-a;当a=1时,=1.
10、2
【解析】
连接EF、AE,证四边形AEFD是平行四边形,注意应用直角三角形斜边上的中线等于斜边的一半和平行四边形的性质:平行四边形的对边相等,求得AE长即可.
【详解】
连接EF,AE.
∵点E,F分别为BC,AC的中点,
∴EF∥AB,EF=AB.
又∵AD=AB,
∴EF=AD.
又∵EF∥AD,
∴四边形AEFD是平行四边形.
在Rt△ABC中,
∵E为BC的中点,BC=4,
∴AE=BC=2.
又∵四边形AEFD是平行四边形,
∴DF=AE=2.
本题主要考查了平行四边形判定,有中点时需考虑运用三角形的中位线定理或则直角三角形斜边上的中线等于斜边的一半.
11、或
【解析】
分两种情况:①当作斜边AB的垂直平分线PQ,与BC交于点D时,连接AD由PQ垂直平分线段AB,推出DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,根据AD2=AC2+CD2构建方程即可解决问题;②当作直角边的垂直平分线PQ,与斜边AB交于点D时,连接CD,根据直角三角形斜边上的中线性质求得CD.
【详解】
解:当作斜边AB的垂直平分线PQ,与BC交于点D时,连接AD.
∵PQ垂直平分线段AB,
∴DA=DB,设DA=DB=x,
在Rt△ACD中,∠C=90°,AD2=AC2+CD2,
∴x2=32+(1-x)2,
解得x=,
∴CD=BC-DB=1-=;
当作直角边的垂直平分线PQ或P′Q′,都与斜边AB交于点D时,连接CD,
则D是AB的中点,
∴CD=AB=,
综上可知,CD=或.
故答案为:或.
本题考查基本作图,线段的垂直平分线的性质,勾股定理等知识,直角三角形斜边上的中线等于斜边的一半,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.
12、-2
【解析】
利用根与系数的关系求出两根之和与两根之积,代入所求式子中计算即可求出值.
【详解】
解:依题意得:x1+x1=-m,x1x1=-1.
所以x1+x1-x1x1=-m-(-1)=6
所以m=-2.
故答案是:-2.
此题考查了一元二次方程根与系数的关系,一元二次方程ax1+bx+c=0(a≠0)的根与系数的关系为:x1+x1=-,x1•x1=.
13、5cm
【解析】
只要得出OE是△ABC的中位线,从而求得OE的长.
【详解】
解:∵OE∥DC,AO=CO,
∴OE是△ABC的中位线,
∵四边形ABCD是菱形,
∴AB=AD=10cm,
∴OE=5cm.
故答案为5cm.
本题考查了菱形的性质及三角形的中位线定理,属于基础题,关键是得出OE是△ABC的中位线,难度一般.
三、解答题(本大题共5个小题,共48分)
14、(1)证明见解析;(2证明见解析;(3)BD=1.
【解析】
(1)先根据等角对等边得出EA=ED,再在Rt△ADF中根据直角三角形的两锐角互余和等角的余角相等得出∠EAC=∠F,得出EA=EF,等量代换即可解决问题;
(2)结论:BD=CF.如图2中,在BE上取一点M,使得ME=CE,连接DM.想办法证明DM=CF,DM=BD即可;
(3)如图3中,过点E作EN⊥AD交AD于点N.设BD=x,则DN=,DE=AE=,由∠B=45°,EN⊥BN.推出EN=BN=x+=,在Rt△DEN中,根据DN2+NE2=DE2,构建方程即可解决问题.
【详解】
(1)证明:如图1中,
,
,,
,
,
,,
.
(2)解:结论:.
理由:如图2中,在上取一点,使得,连接.
.,.
,
,,
,
,
,
,
,
.
(3)如图3中,过点作交于点.
,,
,
设,则,,
,.
,
在中,,
解得或(舍弃)
.
本题是一道三角形综合题,主要考查了等腰三角形的判定和性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
15、(1)甲、乙工程队每天分别能铺设米和米.
(2)所以分配方案有3种.
方案一:分配给甲工程队米,分配给乙工程队米;
方案二:分配给甲工程队米,分配给乙工程队米;
方案三:分配给甲工程队米,分配给乙工程队米.
【解析】
(1)设甲工程队每天能铺设x米.根据甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同,列方程求解;
(2)设分配给甲工程队y米,则分配给乙工程队(1000-y)米.根据完成该项工程的工期不超过10天,列不等式组进行分析.
【详解】
(1)解:设甲工程队每天能铺设米,则乙工程队每天能铺设()米.
根据题意得:.解得.
检验:是原分式方程的解.
答:甲、乙工程队每天分别能铺设米和米.
(2)解:设分配给甲工程队米,则分配给乙工程队()米.
由题意,得
解得.
所以分配方案有3种.
方案一:分配给甲工程队米,分配给乙工程队米;
方案二:分配给甲工程队米,分配给乙工程队米;
方案三:分配给甲工程队米,分配给乙工程队米.
16、(1)见解析;(2)GHAB,见解析;(3)12+8
【解析】
(1)根据正方形的性质证明∠BAF+∠AED=90°即可解决问题.
(2)证明△ADF≌△BAF(ASA),推出AE=BF,由AECD,推出=,由BFAD,推出=,由AE=BF,CD=AD,推出=可得结论.
(3)如图2﹣1中,在AD上取一点J,使得AJ=AE,连接EJ.设AE=AJ=a.利用三角形的面积公式构建方程求出a即可解决问题.
【详解】
(1)证明:如图1中,
∵四边形ABCD是正方形,
∴∠DAE=∠ABF=90°,
∵∠ADE=∠BAF,
∴∠ADE+∠AED=∠BAF+∠AED=90°,
∴∠AME=90°,
∴AF⊥DE.
(2)解:如图2中.结论:GHAB.
理由:连接GH.
∵AD=AB,∠DAE=∠ABF=90°,∠ADE=∠BAF,
∴△ADE≌△BAF(ASA),
∴AE=BF,
∵AECD,
∴=,
∵BFAD,
∴=,
∵AE=BF,CD=AD,
∴=,
∴GHAB.
(3)解:如图2﹣1中,在AD上取一点J,使得AJ=AE,连接EJ.设AE=AJ=a.
∵AF平分∠BAC,∠BAC=45°,
∴∠BAF=∠ADE=22.5°,
∵AE=AJ=a,∠EAJ=90°,
∴∠AJE=45°,
∵∠AJE=∠JED+∠JDE,
∴∠JED=∠JDE=22.5°,
∴EJ=DJ=a,
∵AB=AD=a+a,AE=AJ,
∴BE=DJ=a,
∵S△BDE=4+2,
∴×a×(a+a)=4+2,
解得a2=4,
∴a=2或﹣2(舍弃),
∴AD=2+2,
∴正方形ABCD的面积=12+8.
本题主要考查正方形的性质,全等三角形的判定及性质,平行线分线段成比例,掌握正方形的性质,全等三角形的判定及性质和平行线分线段成比例是解题的关键.
17、 (1) x 1 = 0 , x2 = 2;(2)x1 = 2 ,x2 =﹣4.
【解析】
根据题中所给的材料把绝对值符号内的x+2分两种情况讨论(x+2≥0和x+2<0),去掉绝对值符号后再解方程求解.
【详解】
(1)当 x﹣2 ≥ 0,即 x ≥ 2时,
x2 ﹣2(x﹣2)﹣4= 0
x2 -2x = 0
解得x 1 = 0,x2 = 2
∵ x ≥ 2,∴x 1 = 0 舍去
(2)当 x﹣2 < 0,即 x < 2时,
x2 + 2(x﹣2)﹣4= 0
x2+ 2x﹣8= 0
解得 x 1 =﹣4 ,x2 = 2
∵ x < 2,∴x2 = 2 舍去.
综上所述,原方程的解是 x1 = 2 ,x2 =﹣4.
从题中所给材料找到需要的解题方法是解题的关键.注意在去掉绝对值符号时要针对符号内的代数式的正负性分情况讨论.
18、 (1) , ;(2) 两船同时出发经24分钟相遇,此时距B码头8千米.
【解析】
(1)设y1=k1x+b,把(0,40),(30,0)代入得到方程组即可;设y2=k2x,把(120,40)代入即可解答;
(2)联立y1,y2得到方程组,求出方程组的解,即可求出M点的坐标.
【详解】
解:设,
把,代入得:,
解得:,
,
设,
把代入得:,
解得:,
;
联立与得:,
解得:,
点M的坐标为,
它的实际意义是:两船同时出发经24分钟相遇,此时距B码头8千米.
本题考查了一次函数的应用,解决本题的关键是用待定系数法求一次函数关系式,并会用一次函数研究实际问题,具备在直角坐标系中的读图能力.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
观察图形可知,小正方形的面积=大正方形的面积-4个直角三角形的面积,利用已知,设大正方形的边长为c,大正方形的面积为13,即:,再利用勾股定理得可以得出直角三角形的面积,进而求出答案.
【详解】
解:如图所示:∵,∴,
∵,,∴,
∴小正方体的面积=大正方形的面积-4个直角三角形的面积
=,故答案为:1.
此题主要考查了勾股定理的应用,熟练应用勾股定理是解题关键.
20、1
【解析】
【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可.
【详解】∵关于x的一元二次方程mx1+5x+m1﹣1m=0有一个根为0,
∴m1﹣1m=0且m≠0,
解得,m=1,
故答案是:1.
【点睛】本题考查了一元二次方程ax1+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.
21、3
【解析】
增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x-2=0,得到x=2,然后代入化为整式方程的方程算出m的值.
【详解】
解:去分母得:3x=m+3,
由分式方程有增根,得到x﹣2=0,即x=2,
把x=2代入方程得:6=m+3,
解得:m=3,
故答案为:3
此题考查分式方程的增根,解题关键在于得到x的值.
22、5
【解析】
根据勾股定理解答即可.
【详解】
点P到原点O距离是.
故答案为:5
此题考查勾股定理,关键是根据勾股定理得出距离.
23、1
【解析】
根据样本容量的定义:样本中个体的数目称为样本容量,即可求解.
【详解】
解:这个调查的样本是1名考生的数学成绩,故样本容量是1.
故答案为1.
本题考查样本容量,难度不大,熟练掌握样本容量的定义是顺利解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)MN.
【解析】
(1)证△OAM≌△OBN即可得;
(2)作OH⊥AD,由正方形的边长为6且E为OM的中点知OH=HA=3、HM=6,再根据勾股定理得OM=,由勾股定理即可求出MN的长.
【详解】
(1)∵四边形ABCD是正方形,
∴OA=OB,∠DAO=45°,∠OBA=45°,
∴∠OAM=∠OBN=135°,
∵∠EOF=90°,∠AOB=90°,
∴∠AOM=∠BON,
∴△OAM≌△OBN(ASA),
∴OM=ON;
(2)如图,过点O作OH⊥AD于点H,
∵正方形的边长为6,
∴OH=HA=3,
∵E为OM的中点,
∴HM=6,
则OM=,
∴MN=.
本题主要考查正方形的性质,解题的关键是掌握正方形的四条边都相等,正方形的每条对角线平分一组对角及全等三角形的判定与性质.
25、(1)见解析;(2)8;(3)80分
【解析】
(1)利用总人数200减去其它各组的人数即可求得第二组的人数,从而作出直方图;
(2)设抽了x人,根据各层抽取的人数的比例相等,即可列方程求解;
(3)利用总人数乘以一等奖的人数,据此即可判断.
【详解】
解:(1)200﹣(35+40+70+10)=45,如下图:
(2)设抽了x人,则,解得x=8;
(3)依题意知获一等奖的人数为200×25%=50(人).
则一等奖的分数线是80分.
26、(1)(﹣3,2),关于x轴对称;(2)点M(1,1),(1,0),(1,﹣1);(3)y=﹣8x﹣1
【解析】
(1)根据直角坐标系的特点即可求解,根据题意平移坐标再连接即可;
(2)设△ABM的AB边上的高为h,根据面积求出h,即可求解;
【详解】
解:(1)B(﹣3,2),A、B关于x轴对称;四边形ABCD如图所示;
故答案为(﹣3,2),关于x轴对称.
(2)设△ABM的AB边上的高为h,由题意:×1×h=8,
∴h=1,
∴满足条件的点在直线l上,且在矩形内部,
∴点M(1,1),(1,0),(1,﹣1).
(3)∵直线把四边形ABCD的面积等分,
∴直线经过矩形的对称中心(﹣,0),
设直线的解析式为y=kx+b,则有,
解得,
∴直线的解析式为y=﹣8x﹣1.
故答案为y=﹣8x﹣1.
此题主要考查直角坐标系与几何,解题的关键是熟知一次函数解析式的解法.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份2025届江苏省南京高淳区四校联考九年级数学第一学期开学监测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届湖北省武汉汉阳区四校联考数学九年级第一学期开学学业水平测试试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届广东省佛山南海区四校联考数学九年级第一学期开学学业水平测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。