2025届湖北省潜江市张金镇铁匠沟初级中学数学九年级第一学期开学达标测试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,矩形中,对角线、交于点.若,,则的长为( )
A.6B.5C.4D.3
2、(4分)下列各点中,不在反比例函数图象上的点是( )
A.B.C.D.
3、(4分)如果,那么下列各式正确的是( )
A.a+5<b+5B.5a<5bC.a﹣5<b﹣5D.
4、(4分)化简的结果是()
A.-2B.2C.D.4
5、(4分)将三角形纸片△ABC按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=8,BC=10,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是( ).
A.5B.C.或4D.5或
6、(4分)如图1,动点K从△ABC的顶点A出发,沿AB﹣BC匀速运动到点C停止.在动点K运动过程中,线段AK的长度y与运动时间x的函数关系如图2所示,其中点Q为曲线部分的最低点,若△ABC的面积是5,则图2中a的值为( )
A.B.5C.7D.3
7、(4分)如图,沿直线边BC所在的直线向右平移得到,下列结论中不一定正确的是
A.B.
C.D.
8、(4分)下列各组数中不能作为直角三角形的三边长的是( )
A.,,B.,,C.,1,2D.,,
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD=BC,∠EPF=147°,则∠PFE的度数是___.
10、(4分)如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处,点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②S△ABG=S△FGH;③△DEF∽△ABG;④AG+DF=FG.其中正确的是_____.(把所有正确结论的序号都选上)
11、(4分)如图所示,一次函数的图象与x轴的交点为,则下列说法:
①y的值随x的值的增大而增大;
②b>0;
③关于x的方程的解为.
其中说法正确的有______只写序号
12、(4分)如图,在菱形中,对角线交于点,过点作于点,已知BO=4,S菱形ABCD=24,则___.
13、(4分)已知函数,当= _______ 时,直线过原点;为 _______ 数时,函数随的增大而增大 .
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在Rt△ABC中,∠C=90°,以点B为圆心,以适当的长为半径画弧,与∠ABC的两边相交于点E、F,分别以点E和点F为圆心,以大于EF的长为半径画弧,两弧相交于点M,作射线BM交AC于点D;若∠ABC=2∠A,证明:AD=2CD.
15、(8分)已知点E是正方形ABCD内一点,连接AE,CE.
(1)如图1,连接,过点作于点,若,,四边形的面积为.
①证明:;
②求线段的长.
(2)如图2,若,,,求线段,的长.
16、(8分)我市一水果销售公司,需将一批鲜桃运往某地,有汽车、火车、运输工具可供选择,两种运输工具的主要参考数据如下:
若这批水果在运输过程中(含装卸时间)的损耗为150元/时,设运输路程为x()千米,用汽车运输所需总费用为y1元,用火车运输所需总费用为y2元.
(1)分别求出y1、y2与x的关系式;
(2)那么你认为采用哪种运输工具比较好?
17、(10分)已知矩形,为边上一点,,点从点出发,以每秒个单位的速度沿着边向终点运动,连接,设点运动的时间为秒,则当的值为__________时,是以为腰的等腰三角形.
18、(10分)在平面直角坐标系中,一次函数的图象交轴、轴分别于两点,交直线于。
(1)求点的坐标;
(2)若,求的值;
(3)在(2)的条件下,是线段上一点,轴于,交于,若,求点的坐标。
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若一个三角形的三边的比为3:4:5,则这个三角形的三边上的高之比为__________.
20、(4分) “折竹抵地”问题源自《九章算术》中,即:今有竹高一丈,末折抵地,去本四尺,问折者高几何?意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远,则折断后的竹子高度为_____尺.
21、(4分)下面是小明设计的“过三角形的一个顶点作该顶点对边的平行线”的尺规作图过程.
已知:如图1,△ABC.
求作:直线AD,使AD∥BC.
作法:如图2:
①分别以点A、C为圆心,以大于AC为半径作弧,两弧交于点E、F;
②作直线EF,交AC于点O;
③作射线BO,在射线BO上截取OD(B与D不重合),使得OD = OB;
④作直线AD.
∴ 直线AD就是所求作的平行线.
根据小明设计的尺规作图过程,完成下面的证明.
证明:连接CD.
∵OA =OC,OB=OD,
∴四边形ABCD是平行四边形(_______________________)(填推理依据).
∴AD∥BC(__________________________________)(填推理依据).
22、(4分)如图,已知一次函数y=kx+3和y=-x+b的图象交于点P(2,4),则关于x的一元一次不等式kx+3>-x+b的解集是_______.
23、(4分)解分式方程+=时,设=y,则原方程化为关于y的整式方程是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已知一台A型机器比一台B型机器每小时多加工2个零件,且一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等.
(1)每台A,B两种型号的机器每小时分别加工多少个零件?
(2)如果该企业计划安排A,B两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A,B两种型号的机器可以各安排多少台?
25、(10分)计算
(1); (2).
26、(12分)如图,正方形ABCD和正方形CEFC中,点D在CG上,BC=1,CE=3,H是AF的中点,EH与CF交于点O.
(1)求证:HC=HF.
(2)求HE的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
由矩形的性质可得:∠ABC=90°,OA=OC=OB=OD=1,∠AOB=2∠ACB=60°,△AOB为等边三角形,故AB=OA=1.
【详解】
解:∵四边形ABCD是矩形,
∴OA=OC=OB=OD=AC=1,∠ABC=90°,
∴∠OBC=∠ACB=30°
∵∠AOB=∠OBC+∠ACB
∴∠AOB=60°
∵OA=OB
∴△AOB是等边三角形
∴AB=OA=1
故选:B
本题考查了矩形的性质,等边三角形的判定和性质,等腰三角形判定和性质,是基础题,比较简单.
2、A
【解析】
直接利用反比例函数图象上点的坐标特点进而得出答案.
【详解】
解:∵,
∴xy=12,
A.(3,−4),此时xy=3×(−4)=−12,符合题意;
B、(3,4),此时xy=3×4=12,不合题意;
C、(2,6),此时xy=2×6=12,不合题意;
D、(−2,−6),此时xy=−2×(−6)=12,不合题意;
故选:A.
此题主要考查了反比例函数图象上点的坐标特征,属于基础题.
3、D
【解析】
根据不等式的性质逐一进行分析判断即可得.
【详解】
∵,
∴a+5>b+5,故A选项错误,
5a>5b,故B选项错误,
a-5>b-5,故C选项错误,
,故D选项正确,
故选D.
本题考查了不等式的性质,熟练掌握不等式的基本性质是解题的关键.
4、B
【解析】
先将括号内的数化简,再开根号,根据开方的结果为正数可得出答案.
【详解】
==2,
故选:B.
本题考查了二次根式的化简,解此类题目要注意算术平方根为非负数.
5、D
【解析】
根据折叠得到BF=B′F,根据相似三角形的性质得到或,设BF=x,则CF=10-x,即可求出x的长,得到BF的长,即可选出答案.
【详解】
解:∵△ABC沿EF折叠B和B′重合,
∴BF=B′F,
设BF=x,则CF=10-x,
∵当△B′FC∽△ABC,
,
∵AB=8,BC=10,
∴,解得:x=,
即:BF=,
当△FB′C∽△ABC,,
,
解得:x=5,
故BF=5或,
故选:D.
本题主要考查了相似三角形的性质,以及图形的折叠问题,解此题的关键是设BF=x,根据相似三角形的性质列出比例式.
6、A
【解析】
根据题意可知AB=AC,点Q表示点K在BC中点,由△ABC的面积是1,得出BC的值,再利用勾股定理即可解答.
【详解】
由图象的曲线部分看出直线部分表示K点在AB上,且AB=a,
曲线开始AK=a,结束时AK=a,所以AB=AC.
当AK⊥BC时,在曲线部分AK最小为1.
所以 BC×1=1,解得BC=2.
所以AB=.
故选:A.
此题考查动点问题的函数图象,解题关键在于结合函数图象进行解答.
7、C
【解析】
由平移的性质,结合图形,对选项进行一一分析,选择正确答案.
【详解】
沿直线边BC所在的直线向右平移得到,
,,,
,,
,,
但不能得出,
故选C.
本题考查了平移的基本性质:平移不改变图形的形状和大小;经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.
8、A
【解析】
根据勾股定理的逆定理逐项分析即可.
【详解】
A. ∵1.52+22≠32,∴ ,,不能作为直角三角形的三边长,符合题意;
B.∵72+242=252,∴,,能作为直角三角形的三边长,不符合题意;
C.∵ ,∴,1,2能作为直角三角形的三边长,不符合题意;
D.∵92+122=152,∴,,能作为直角三角形的三边长,不符合题意;
故选A.
本题考查了勾股定理逆定理,如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,在一个三角形中,即如果用a,b,c表示三角形的三条边,如果a2+b2=c2,那么这个三角形是直角三角形.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、16.5°
【解析】
根据三角形中位线定理得到PE=AD,PF=BC,根据等腰三角形的性质、三角形内角和定理计算即可.
【详解】
解:∵P是BD的中点,E是AB的中点,
∴PE=AD,
同理,PF=BC,
∵AD=BC,
∴PE=PF,
∴∠PFE=×(180°-∠EPF)=16.5°,
故答案为:16.5°.
本题考查的是三角形中位线定理、等腰三角形的性质、三角形内角和定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
10、①②④.
【解析】
利用折叠性质得∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,则可得到∠EBG=∠ABC,于是可对①进行判断;在Rt△ABF中利用勾股定理计算出AF=8,则DF=AD-AF=2,设AG=x,则GH=x,GF=8-x,HF=BF-BH=4,利用勾股定理得到x2+42=(8-x)2,解得x=3,所以AG=3,GF=5,于是可对②④进行判断;接着证明△ABF∽△DFE,利用相似比得到,而,所以,所以△DEF与△ABG不相似,于是可对③进行判断.
【详解】
解:∵△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,
将△ABG沿BG折叠,点A恰落在线段BF上的点H处,
∴∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,
∴∠EBG=∠EBF+∠FBG=∠CBF+∠ABF=∠ABC=45°,所以①正确;
在Rt△ABF中,AF===8,
∴DF=AD﹣AF=10﹣8=2,
设AG=x,则GH=x,GF=8﹣x,HF=BF﹣BH=10﹣6=4,
在Rt△GFH中,
∵GH2+HF2=GF2,
∴x2+42=(8﹣x)2,解得x=3,
∴GF=5,
∴AG+DF=FG=5,所以④正确;
∵△BCE沿BE折叠,点C恰落在边AD上的点F处,
∴∠BFE=∠C=90°,
∴∠EFD+∠AFB=90°,
而∠AFB+∠ABF=90°,
∴∠ABF=∠EFD,
∴△ABF∽△DFE,
∴=,
∴===,
而==2,
∴≠,
∴△DEF与△ABG不相似;所以③错误.
∵S△ABG=×6×3=9,S△GHF=×3×4=6,
∴S△ABG=S△FGH,所以②正确.
故答案是:①②④.
本题考查了三角形相似的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用;在利用相似三角形的性质时,主要利用相似比计算线段的长.也考查了折叠和矩形的性质.
11、.
【解析】
一次函数及其应用:用函数的观点看方程(组)或不等式.
【详解】
由图象得:
①的值随的值的增大而增大;
②;
③关于的方程的解为.
故答案为:①②③.
本题考查了一次函数与一元一次方程,利用一次函数的性质、一次函数与一元一次方程的关系是解题关键.
12、
【解析】
根据菱形面积=对角线积的一半可求,再根据勾股定理求出,然后由菱形的面积即可得出结果.
【详解】
∵四边形是菱形,
∴,,
∴,
∵,
∴,
∴,
∴,
∵,
∴;
故答案为:.
本题考查了菱形的性质、勾股定理以及菱形面积公式.熟练掌握菱形的性质,由勾股定理求出是解题的关键.
13、 m>0
【解析】
分析:(1)根据正比例函数的性质可得出m的值;
(2)根据一次函数的性质列出关于m的不等式,求出m的取值范围即可.
详解:直线过原点,则 ;即,解得: ;
函数随的增大而增大 ,说明 ,即 ,解得:;
故分别应填:;m>0 .
点睛:本题考查的是一次函数的图象与系数的关系,熟知一次函数的定义及增减性是解答此题的关键.
三、解答题(本大题共5个小题,共48分)
14、详见解析
【解析】
根据角平分线的画法和性质解答即可.
【详解】
证明:由题意可得:BD是∠ABC的角平分线,
∵∠ABC=2∠A,在Rt△ABC中,∠C=90°,
∴∠ABC=60°,∠A=30°,
∴∠CBD=∠DBA=30°,
∴BD=2CD,
∵∠DBA=∠A=30°,
∴AD=BD,
∴AD=2CD.
本题考查了基本作图,关键是根据角平分线的画法和性质证明.
15、(1)①证明见解析;②AE=;(2),.
【解析】
(1)①由正方形性质可得:AB=BC,∠ABC=90°,再证明△ABF≌△BCE(AAS)即可;②设AF=BE=m,由四边形ABCE的面积=△ABE面积+△BCE面积,可列方程求出AF,然后利用勾股定理可得AE的长;
(2)过A作AF⊥CE于F,连接AC,由,可得,再由△AEF、△ABC均为等腰直角三角形及勾股定理即可求得AE和CE的长.
【详解】
解:(1)①证明:∵ABCD是正方形,
∴AB=BC,∠ABC=90°
∴∠ABF+∠CBE=90°
∵AF⊥BE
∴∠AFB=∠BEC=90°
∴∠ABF+∠BAF=90°
∴∠BAF=∠CBE
∴△ABF≌△BCE(AAS)
∴AF=BE;
②∵△ABF≌△BCE(AAS)
∴BF=CE=2,设AF=BE=m,
∵四边形ABCE的面积为.
∴S△BCE+S△ABE=,即×2m+m2=,
解得:m1=5,m2=−7(舍),
∴AF=BE=5,EF=3
∴AE=;
(2)如图2,过A作AF⊥CE于F,连接AC,则∠F=90°,
∵∠AEC=135°
∴∠AEF=180°−∠AEC=45°=∠EAF,
∴△AEF是等腰直角三角形,
∴AF=EF=AE,
∵,即:,
∴EF+CE=,即CF=,
∵△ABC是等腰直角三角形,AB=4
∴AC=,
∴,
∴AE=AF=4,EF=AF=,
∴CE=CF−EF=.
本题考查了正方形性质,等腰直角三角形性质,勾股定理等知识点,解题关键是添加辅助线构造直角三角形,利用勾股定理建立方程求解.
16、(1),;(2)当两地路程大于520千米时,采用火车运输较好;当两地路程等于520千米时,两种运输工具一样;当两地路程小于520千米时,采用汽车运输较好.
【解析】
(1)根据表格的信息结合等量关系即可写出关系式;
(2)根据题意列出不等式或等式进行求解,根据x的取值判断费用最少的情况.
【详解】
解:(1)设运输路程为x()千米,用汽车运输所需总费用为y1元,
用火车运输所需总费用为y2元.根据题意得
,
∴,
,
∴;
(2)当时,即,
∴;
当时,即,
∴;
当时,即,
∴.
∴当两地路程大于520千米时,采用火车运输较好;
当两地路程等于520千米时,两种运输工具一样;
当两地路程小于520千米时,采用汽车运输较好.
此题主要考查一次函数的应用,解题的关键是根据题意找到等量关系列出关系式.
17、或
【解析】
根据矩形的性质求出∠D=90°,AB=CD=8,求出DE后根据勾股定理求出AE;过E作EM⊥AB于M,过P作PQ⊥CD于Q,求出AM=DE=3,当EP=EA时,AP=2DE=6,即可求出t;当AP=AE=5时,求出BP=3,即可求出t;当PE=PA时,则x2=(x-3)2+42,求出x,即可求出t.
【详解】
∵四边形ABCD是长方形,
∴∠D=90°,AB=CD=8,
∵CE=5,
∴DE=3,
在Rt△ADE中,∠D=90°,AD=4,DE=3,由勾股定理得:AE=5
过E作EM⊥AB于M,过P作PQ⊥CD于Q,
则AM=DE=3,
若△PAE是等腰三角形,则有三种可能:
当EP=EA时,AP=2DE=6,
所以t==2;
当AP=AE=5时,BP=8−5=3,
所以t=3÷1=3;
当PE=PA时,设PA=PE=x,BP=8−x,则EQ=5−(8−x)=x−3,
则
解得:x=,
则t=(8−)÷1=,
综上所述t=2或时,△PAE为等腰三角形。
故答案为:2或.
本题考查等腰三角形的性质,分情况求得t的值是解题关键.
18、(1),;(2);(3)点的坐标为.
【解析】
(1)分别代入x=0、y=0求出y、x的值,由此可得出点B. A的坐标;
(2)设点P的坐标为(x,y),利用一次函数图象上点的坐标特征结合等腰三角形的性质可得出点P的坐标,再由点P在直线y=kx上利用一次函数图象上点的坐标特征可求出k值;
(3)设点C的坐标为(x,− x+2),则点D的坐标为(x,x),点E的坐标为(x,0),进而可得出CD、DE的长度,由CD=2DE可得出关于x的一元一次方程,解之即可得出结论
【详解】
解:(1)当时,,
当时,,
,
;
(2)设,因为点在直线,且,
,
把代入,所以点的坐标是,
因为点在直线上,所以;
(3)设点,则,,
因为,,
解得:,则,
所以点的坐标为.
此题考查一次函数图象上点的坐标特征,待定系数法求一次函数解析式,解题关键在于分别代入x=0、y=0
一、填空题(本大题共5个小题,每小题4分,共20分)
19、20:15:1.
【解析】
根据勾股定理的逆定理得到这个三角形是直角三角形,根据三角形的面积公式求出斜边上的高,然后计算即可.
【详解】
解:设三角形的三边分别为3x、4x、5x,
∵(3x)2+(4x)2=25x2=(5x)2,
∴这个三角形是直角三角形,
设斜边上的高为h,
则×3x×4x=×5x×h,
解得,h=,
则这个三角形的三边上的高之比=4x:3x:=20:15:1,
故答案为:20:15:1.
本题考查的是勾股定理的逆定理、三角形的面积计算,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
20、4.1.
【解析】
根据题意结合勾股定理得出折断处离地面的长度即可.
【详解】
解:
设折断处离地面的高度OA是x尺,根据题意可得:
x1+41=(10﹣x)1,
解得:x=4.1,
答:折断处离地面的高度OA是4.1尺.
故答案为:4.1.
本题主要考查了勾股定理的应用,在本题中理解题意,知道柱子折断后刚好构成一个直角三角形是解题的关键.
21、对角线互相平分的四边形是平行四边形 平行四边形对边平行
【解析】
根据平行四边形的判定及性质依次判断即可.
【详解】
证明:连接CD,
∵OA=OC, OB=OD,
∴四边形ABCD是平行四边形(对角线互相平分的四边形是平行四边形),
∴AD∥BC (平行四边形的对边平行),
故答案为:对角线互相平分的四边形是平行四边形;平行四边形的对边平行.
此题考查平行四边形的判定与性质,熟记定理是解题的关键.
22、x>1
【解析】
观察函数图象得到当x>1时,函数y=kx+3的图象都在y=-x+b的图象上方,所以关于x的不等式kx+3>-x+b的解集为x>1.
【详解】
解:当x>1时,kx+3>-x+b,
即不等式kx+3>-x+b的解集为x>1.
故答案为x>1.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
23、y2-y+1=1
【解析】
根据换元法,可得答案.
【详解】
解:设=y,则原方程化为y+-=1
两边都乘以y,得
y2-y+1=1,
故答案为:y2-y+1=1.
本题考查了解分式方程,利用换元法是解题关键.
二、解答题(本大题共3个小题,共30分)
24、(1)每台A型机器每小时加工8个零件,每台B型机器每小时加工6个零件;(2)共有三种安排方案,方案一:A型机器安排6台,B型机器安排4台;方案二:A型机器安排7台,B型机器安排3台;方案三:A型机器安排8台,B型机器安排2台.
【解析】
(1)设每台B型机器每小时加工x个零件,则每台A型机器每小时加工个零件,根据工作时间工作总量工作效率结合一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)设A型机器安排m台,则B型机器安排台,根据每小时加工零件的总量型机器的数量型机器的数量结合每小时加工的零件不少于72件且不能超过76件,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数即可得出各安排方案.
【详解】
(1)设每台B型机器每小时加工x个零件,则每台A型机器每小时加工个零件,
依题意,得:,
解得:x=6,
经检验,x=6是原方程的解,且符合题意,
.
答:每台A型机器每小时加工8个零件,每台B型机器每小时加工6个零件;
(2)设A型机器安排m台,则B型机器安排台,
依题意,得:,
解得:,
为正整数,
,
答:共有三种安排方案,方案一:A型机器安排6台,B型机器安排4台;方案二:A型机器安排7台,B型机器安排3台;方案三:A型机器安排8台,B型机器安排2台.
本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.
25、(1);(2).
【解析】
(1)先根据二次根式的性质进行化简,再去括号进行运算,即可得到答案;
(2)先根据二次根式的性质进行化简,进行运算,即可得到答案.
【详解】
(1)
=
=
=2
(2)
=
=
本题考查二次根式的混合运算,解题的关键是先化简再进行计算.
26、(1)见解析;(2)HE=.
【解析】
(1)利用直角三角形斜边上的中线等于斜边的一半求解即可;
(2)分别求得HO和OE的长后即可求得HE的长.
【详解】
(1)证明:∵AC、CF分别是正方形ABCD和正方形CGFE的对角线,
∴∠ACD=∠GCF=45°,
∴∠ACF=90°,
又∵H是AF的中点,
∴CH=HF;
(2)∵CH=HF,EC=EF,
∴点H和点E都在线段CF的中垂线上,
∴HE是CF的中垂线,
∴点H和点O是线段AF和CF的中点,
∴OH=AC,
在Rt△ACD和Rt△CEF中,AD=DC=1,CE=EF=3,
∴AC=,
∴CF=3,
又OE是等腰直角△CEF斜边上的高,
∴OE=,
∴HE=HO+OE=2;
本题考查了正方形的性质,直角三角形斜边上的中线,三角形中位线,垂直平分线,勾股定理,解题的关键是根据题干与图形中角和边的关系,找到解决问题的条件.
题号
一
二
三
四
五
总分
得分
运输工具
途中平均速度(单位:千米/时)
途中平均费用(单位:元/千米)
装卸时间(单位:小时)
装卸费用(单位:元)
汽车
75
8
2
1000
火车
100
6
4
2000
2024年江苏省高邮市车逻镇初级中学数学九年级第一学期开学质量检测试题【含答案】: 这是一份2024年江苏省高邮市车逻镇初级中学数学九年级第一学期开学质量检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省盐城市第一初级中学数学九年级第一学期开学达标测试试题【含答案】: 这是一份2024-2025学年江苏省盐城市第一初级中学数学九年级第一学期开学达标测试试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省淮安市实验初级中学数学九年级第一学期开学达标测试试题【含答案】: 这是一份2024-2025学年江苏省淮安市实验初级中学数学九年级第一学期开学达标测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。