2024年江苏省高邮市车逻镇初级中学数学九年级第一学期开学质量检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在△ABC中,∠A:∠B:∠C=1:1:2,则下列说法错误的是( )
A.a2+c2=b2B.c2=2a2C.a=bD.∠C=90°
2、(4分)某市5月份中连续8天的最高气温如下(单位:):32,30,34,36,36,33,37,38.这组数据的众数是( )
A.34B.37C.36D.35
3、(4分)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:
①甲步行的速度为60米/分;
②乙走完全程用了32分钟;
③乙用16分钟追上甲;
④乙到达终点时,甲离终点还有300米
其中正确的结论有( )
A.1个B.2个C.3个D.4个
4、(4分)如图,在正方形中,以点为圆心,以长为半径画圆弧,交对角线于点,再分别以点、为圆心,以大于长为半径画圆弧,两弧交于点,连结并延长,交的延长线于点,则的大小为( )
A.B.C.D.
5、(4分)不等式组的解集在数轴上表示正确的是( )
A.B.
C.D.
6、(4分)若关于x,y的二元一次方程组的解为,一次函数y=kx+b与y=mx+n的图象的交点坐标为( )
A.(1,2)B.(2,1)C.(2,3)D.(1,3)
7、(4分)下列各式正确的是( )
A.B.
C.D.
8、(4分)如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=BC=1,则下列结论:
①∠CAD=30°②BD=③S平行四边形ABCD=AB•AC④OE=AD⑤S△APO=,正确的个数是( )
A.2B.3C.4D.5
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知等腰三角形的两条边长分别是3cm、7cm,那么这个等腰三角形的周长是________cm.
10、(4分)如图 ,在中, ,,点、为 边上两点, 将、分别沿、折叠,、两点重合于点,若,则的长为__________.
11、(4分)如图,在矩形中,,,点是边上一点,连接,将沿折叠,使点落在点处.当为直角三角形时,__.
12、(4分)如图,菱形ABCD的边长为8, ,点E、F分别为AO、AB的中点,则EF的长度为________.
13、(4分)据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根,华罗庚脱口而出:1.你知道他是怎么快速准确地计算出来的吗?请研究解决下列问题:
已知x3=10648,且x为整数
∵1000=103<10648<1003=1000000,
∴x一定是______位数
∵10648的个位数字是8,
∴x的个位数字一定是______;
划去10648后面的三位648得10,
∵8=23<10<33=27,
∴x的十位数字一定是_____;
∴x=______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线交BC于D,垂足为E,BD=4cm.求AC的长.
15、(8分)因式分解:__________.
16、(8分)某农机租赁公司共有50台收割机,其中甲型20台、乙型30台,现将这50台联合收割机派往A,B两地区收割小麦,其中30台派往A地区,20台派往B地区,两地区与该农机公司商定的每天租赁价格如下表:
(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机天获得的租金为y元,求y关于x的函数关系式,并写出自变量的取值范围:
(2)若使农机租赁公司这50台收割机一天所获租金不低于79600元,为农机租赁公司拟出一个分派方案,使该公司50台收割机每天获得租金最高,并说明理由.
17、(10分)已知,在平行四边形ABCD中,E为AD上一点,且AB=AE,连接BE交AC于点H,过点A作AF⊥BC于F,交BE于点G.
(1)若∠D=50°,求∠EBC的度数;
(2)若AC⊥CD,过点G作GM∥BC交AC于点M,求证:AH=MC.
18、(10分)如图,在直角坐标系中,点为坐标原点,点,分别在轴,轴的正半轴上,矩形的边,,反比例函数的图象经过边的中点.
(1)求该反比例函数的表达式;
(2)求的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)函数y=kx的图象经过点(1,3),则实数k=_____.
20、(4分)已知平行四边形ABCD中,∠A﹣∠B=50°,则∠C=_____.
21、(4分)如图,在菱形ABCD中,已知DE⊥AB,AE:AD=3:5,BE=2,则菱形ABCD的面积是_______.
22、(4分)如图,在正方形网格中有3个小方格涂成了灰色.现从剩余的13个白色小方格中选一个也涂成灰色,使整个涂成灰色的图形成轴对称图形,则这样的白色小方格有______个.
23、(4分)某市出租车的收费标准是:千米以内(包括千米)收费元,超过千米,每增加千米加收元,则当路程是(千米)()时,车费(元)与路程(千米)之间的关系式(需化简)为:________.
二、解答题(本大题共3个小题,共30分)
24、(8分)解不等式组,并写出它的所有非负整数解.
25、(10分)如图,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD对折,点C落在点C′的位置,BC′交AD于点G.
(1)求证:AG=C′G;
(2) 求△BDG的面积.
26、(12分)关于x的一元二次方程x 1 x p 1 0 有两个实数根x1、x1.
(1)求p 的取值范围;
(1)若,求p 的值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据三角形内角和定理分别求出∠A、∠B、∠C,根据勾股定理、等腰三角形的概念判断即可.
【详解】
设∠A、∠B、∠C分别为x、x、2x,
则x+x+2x=180°,
解得,x=45°,
∴∠A、∠B、∠C分别为45°、45°、90°,
∴a2+b2=c2,A错误,符合题意,
c2=2a2,B正确,不符合题意;
a=b,C正确,不符合题意;
∠C=90°,D正确,不符合题意;
故选:A.
考查的是三角形内角和定理、勾股定理,掌握三角形内角和等于180°是解题的关键.
2、C
【解析】
根据众数的定义求解.
【详解】
∵36出现了2次,故众数为36,故选C.
此题主要考查数据的众数,解题的关键是熟知众数的定义.
3、A
【解析】
【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.
【详解】由图可得,
甲步行的速度为:240÷4=60米/分,故①正确,
乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,
乙追上甲用的时间为:16﹣4=12(分钟),故③错误,
乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,
故选A.
【点睛】本题考查了函数图象,弄清题意,读懂图象,从中找到必要的信息是解题的关键.
4、B
【解析】
根据正方形的性质得到∠DAC=∠ACD=45°,由作图知,∠CAP=
∠DAC=22.5°,根据三角形的内角和即可得到结论.
【详解】
解:在正方形中,∠DAC=∠ACD=45∘,
由作图知,∠CAP=∠DAP=22.5°,
∴∠P=180°−∠ACP−∠CAP=22.5°,
故选B.
本题考察了正方形的性质,掌握正方形的对角线平分对角是解题的关键.
5、B
【解析】
先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.
【详解】
∵解不等式得:x<0,解不等式得:x≤3,
∴不等式组的解集为x<0,
在数轴上表示为:,
故选B.
本题考查了解一元一次不等式组,在数轴上表示不等式的解集,解题的关键是先解不等式再画数轴.
6、A
【解析】
函数图象交点坐标为两函数解析式组成的方程组的解,据此即可求解.
【详解】
∵关于x,y的二元一次方程组的解为,
∴一次函数y=kx+b与y=mx+n的图象的交点坐标为(1,2).
故选A.
本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.
7、C
【解析】
根据分式的性质,分式的加减,可得答案.
【详解】
A、c=0时无意义,故A错误;
B、分子分母加同一个整式,分式的值发生变化,故B错误;
C、分子分母都除以同一个不为零的整式,分式的值不变,故C符合题意;
D、,故D错误;
故选C.
本题考查了分式的性质及分式的加减,利用分式的性质及分式的加减是解题关键.
8、D
【解析】
①先根据角平分线和平行得:∠BAE=∠BEA,则AB=BE=1,由有一个角是60度的等腰三角形是等边三角形得:△ABE是等边三角形,由外角的性质和等腰三角形的性质得:∠ACE=30°,最后由平行线的性质可作判断;
②先根据三角形中位线定理得:OE=AB=,OE∥AB,根据勾股定理计算OC=和OD的长,可得BD的长;
③因为∠BAC=90°,根据平行四边形的面积公式可作判断;
④根据三角形中位线定理可作判断;
⑤根据同高三角形面积的比等于对应底边的比可得:S△AOE=S△EOC=OE•OC=,,代入可得结论.
【详解】
①∵AE平分∠BAD,
∴∠BAE=∠DAE,
∵四边形ABCD是平行四边形,
∴AD∥BC,∠ABC=∠ADC=60°,
∴∠DAE=∠BEA,
∴∠BAE=∠BEA,
∴AB=BE=1,
∴△ABE是等边三角形,
∴AE=BE=1,
∵BC=2,
∴EC=1,
∴AE=EC,
∴∠EAC=∠ACE,
∵∠AEB=∠EAC+∠ACE=60°,
∴∠ACE=30°,
∵AD∥BC,
∴∠CAD=∠ACE=30°,
故①正确;
②∵BE=EC,OA=OC,
∴OE=AB=,OE∥AB,
∴∠EOC=∠BAC=60°+30°=90°,
Rt△EOC中,OC=,
∵四边形ABCD是平行四边形,
∴∠BCD=∠BAD=120°,
∴∠ACB=30°,
∴∠ACD=90°,
Rt△OCD中,OD=,
∴BD=2OD=,故②正确;
③由②知:∠BAC=90°,
∴S▱ABCD=AB•AC,
故③正确;
④由②知:OE是△ABC的中位线,
又AB=BC,BC=AD,
∴OE=AB=AD,故④正确;
⑤∵四边形ABCD是平行四边形,
∴OA=OC=,
∴S△AOE=S△EOC=OE•OC=××,
∵OE∥AB,
∴,
∴,
∴S△AOP= S△AOE==,故⑤正确;
本题正确的有:①②③④⑤,5个,
故选D.
本题考查了平行四边形的性质、等腰三角形的性质、直角三角形30度角的性质、三角形面积和平行四边形面积的计算;熟练掌握平行四边形的性质,证明△ABE是等边三角形是解决问题的关键,并熟练掌握同高三角形面积的关系.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
解∵等腰三角形的两条边长分别是3cm、7cm,
∴当此三角形的腰长为3cm时,3+3<7,不能构成三角形,故排除,
∴此三角形的腰长为7cm,底边长为3cm,
∴此等腰三角形的周长=7+7+3=1cm,
故答案为:1.
10、3 或2
【解析】
过点A作AG⊥BC,垂足为G,由等腰三角形的性质可求得AG=BG=GC=2,设BD=x,则DF=x,EF=7-x,然后在Rt△DEF中依据勾股定理列出关于x的方程,从而可求得DG的值,然后依据勾股定理可求得AD的值.
【详解】
如图所示:过点A作AG⊥BC,垂足为G.
∵AB=AC=2 ,∠BAC=90°,
∴BC==1.
∵AB=AC,AG⊥BC,
∴AG=BG=CG=2.
设BD=x,则EC=7-x.
由翻折的性质可知:∠B=∠DFA=∠C=∠AFE=35°,DB=DF,EF=EC.
∴DF=x,EF=7-x.
在Rt△DEF中,DE2=DF2+EF2,即25=x2+(7-x)2,解得:x=3或x=3.
当BD=3时,DG=3,AD=
当BD=3时,DG=2,AD=
∴AD的长为3 或2
故答案为:3 或2
本题主要考查的是翻折的性质、勾股定理的应用、等腰直角三角形的性质,依据题意列出关于x的方程是解题的关键.
11、或1
【解析】
当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图1所示.连结AC,先利用勾股定理计算出AC=13,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即ΔABE沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=1,可计算出CB′=8,设BE=a,则EB′=a,CE=12-a,然后在Rt△CEB′中运用勾股定理可计算出a.②当点B′落在AD边上时,如图2所示.此时ABEB′为正方形.
【详解】
当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如图1所示,
连结AC,
在Rt△ABC中,AB=1,BC=12,
∴AC==13,
∵将ΔABE沿AE折叠,使点B落在点B′处,
∴∠AB′E=∠B=90°,
当△CEB′为直角三角形时,只能得到∠EB′C=90°,
∴点A、B′、C共线,即将ΔABE沿AE折叠,使点B落在对角线AC上的点B′处,设:,则,,
,
由勾股定理得:,
解得:;
②当点B′落在AD边上时,如图2所示,
此时ABEB′为正方形,∴BE=AB=1,
综上所述,BE的长为或1,
故答案为:或1.
本题考查了矩形的性质,折叠问题,勾股定理等知识,熟练掌握折叠前后两图形全等,即对应线段相等;对应角相等是解题的关键.注意本题有两种情况,需要分类讨论,避免漏解.
12、2
【解析】
先根据菱形的性质得出∠ABO=∠ABC=30°,由30°的直角三角形的性质得出OA=AB=4,再根据勾股定理求出OB,然后证明EF为△AOB的中位线,根据三角形中位线定理即可得出结果
【详解】
∵四边形ABCD是菱形,
∴AC⊥BD,∠ABO=∠ABC=30°,
∴OA=AB=4,
∴OB= ,
∵点E、F分别为AO、AB的中点,
∴EF为△AOB的中位线,
∴EF=OB=2.
故答案是:2 .
考查了矩形的性质、勾股定理、含30°角的直角三角形的性质以及三角形中位线定理;根据勾股定理求出OB和证明三角形中位线是解决问题的关键.
13、两;2;2;22
【解析】
根据立方和立方根的定义逐一求解可得.
【详解】
已知,且为整数,
,
一定是两位数,
的个位数字是,
的个位数字一定是,
划去后面的三位得,
,
的十位数字一定是,
.
故答案为:两、、、.
本题主要考查立方根,解题的关键是掌握立方与立方根的定义.
三、解答题(本大题共5个小题,共48分)
14、
【解析】
如图,连接AD,根据垂直平分线的性质可得BD=AD,进而得到∠DAC的度数和DC的长,再根据勾股定理求出AC的长即可.
【详解】
如图,连接AD,
∵ED是AB的垂直平分线,
∴AD=BD=4,
∴∠BAD=∠B=30°,
∴∠DAC=30°,
∵DC=AD=2,
∴AC=.
故答案是.
本题主要考查垂直平分线的性质以及三角函数,求出∠DAC的大小是解题的关键.
15、
【解析】
直接提取公因式3,进而利用平方差公式分解因式即可.
【详解】
解:3a2-27=3(a2-9)
=3(a+3)(a-3).
故答案为:3(a+3)(a-3).
此题主要考查了提取公因式法以及公式法分解因式,正确掌握公式法分解因式是解题关键.
16、(1)y=200x+74000(10≤x≤30);(2)将30台乙型收割机全部派往A地区,20台甲型收割机全部派往B地区,这样公司每天获得租金最高,理由见解析.
【解析】
(1)根据未知量,找出相关量,列出函数关系式;
(2)利用不等式的性质进行求解,对x进行分类即可;根据一次函数的单调性可直接判断每天获得租金最高的方案,得出结论.
【详解】
解:(1)由于派往A地的乙型收割机x台,则派往B地的乙型收割机为(30-x)台,派往A,B地区的甲型收割机分别为(30-x)台和(x-10)台.
∴y=1600x+1200(30-x)+1800(30-x)+1600(x-10)=200x+74000(10≤x≤30).
(2)由题意,得200x+74000≥79600,解得x≥28,
∵10≤x≤30,x是正整数,∴x=28、29、30
∴有3种不同分派方案:
①当x=28时,派往A地区的甲型收割机2台,乙型收割机28台,余者全部派往B地区;
②当x=29时,派往A地区的甲型收割机1台,乙型收割机29台,余者全部派往B地区;
③当x=30时,派往A地区的甲型收割机0台,乙型收割机30台,余者全部派往B地区;∵y=200x+74000中,
∴y随x的增大而增大,∴当x=30时,y取得最大值,
此时,y=200×30+74000=80000,
∴农机租赁公司将30台乙型收割机全部派往A地区,20台甲型收割机全部派往B地区,这样公司每天获得租金最高,最高租金为80000元.
故答案为:(1)y=200x+74000(10≤x≤30);(2)将30台乙型收割机全部派往A地区,20台甲型收割机全部派往B地区,这样公司每天获得租金最高,理由见解析.
本题考查利用一次函数解决实际问题,解题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.
17、(1)∠EBC=25°;(2)见解析;
【解析】
(1)根据等边对等角以及平行线的性质,即可得到∠1=∠2=∠ABC,再根据平行四边形ABCD中,∠D=50°=∠ABC,可得出∠EBC的度数;
(2)过M作MN⊥BC于N,过G作GP⊥AB于P,则∠CNM=∠APG=90°,先根据AAS判定△BPG≌△BFG,得到PG=GF,根据矩形GFNM中GF=MN,即可得出PG=NM,进而判定△PAG≌△NCM(AAS),可得AG=CM,再根据等角对等边得到AH=AG,即可得到结论.
【详解】
(1)∵AB=AE,
∴∠1=∠3,
∵AE∥BC,
∴∠2=∠3,
∴∠1=∠2=∠ABC,
又∵平行四边形ABCD中,∠D=50°,
∴∠ABC=50°,
∴∠EBC=25°;
(2)证明:如图,过M作MN⊥BC于N,过G作GP⊥AB于P,则∠CNM=∠APG=90°,
由(1)可得,∠1=∠2,
∵AF⊥BC,
∴∠BPG=∠BFG=90°,
在△BPG和△BFG中,
,
∴△BPG≌△BFG(AAS),
∴PG=GF,
又∵矩形GFNM中,GF=MN,
∴PG=NM,
∵AC⊥CD,CD∥AB,
∴∠BAC=90°=∠AFB,
即∠PAG+∠ABF=∠NCM+∠ABC=90°,
∴∠PAG=∠NCM,
在△PAG和△NCM中,
,
∴△PAG≌△NCM(AAS),
∴AG=CM,
∵∠1=∠2,∠BAH=∠BFG,
∴∠AHG=∠FGB=∠AGH,
∴AG=AH,
∴AH=MC.
此题考查全等三角形的判定与性质,平行四边形的性质,解题关键在于掌握判定定理和作辅助线.
18、(1);(2).
【解析】
(1)根据,求出C点坐标,再根据为的中点,得到D点坐标,再用待定系数法即可求解函数解析式;
(2)先求出E点坐标,利用割补法即可求出的面积.
【详解】
解:(1)∵,,
∴.
∵为的中点,
∴.代入可得,
∴.
(2)将代入得,
∴.
∴矩形.
此题主要考查反比例函数与几何综合,解题的关键是熟知待定系数法的应用.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、3
【解析】
试题分析:直接把点(1,3)代入y=kx,然后求出k即可.
解:把点(1,3)代入y=kx,
解得:k=3,
故答案为3
【点评】本题考查了待定系数法求正比例函数解析式:设正比例函数解析式为y=kx(k≠0),然后把正比例函数图象上一个点的坐标代入求出k即可.
20、115°.
【解析】
根据平行四边形的邻角互补可得∠A+∠B=180°,和已知∠A﹣∠B=50°,就可建立方程求出∠A的度数,再由平行四边形的性质即可得∠C的度数.
【详解】
在平行四边形ABCD中,∠A+∠B=180°,
又∵∠A﹣∠B=50°,
把这两个式子相加即可求出∠A =115°,
∴∠A=∠C=115°,
故答案为115°.
本题考查了平行四边形的性质:邻角互补,对角相等,熟知性质是解题的关键.
21、20
【解析】
先由线段比求出AE,AB,AD,再由勾股定理求出DE,根据面积公式再求结果.
【详解】
因为,四边形ABCD是菱形,
所以,AD=AB,
因为,AE:AD=3:5,
所以,AE:AB=3:5,
所以,AE:BE=3:2,
因为,BE=2,
所以,AE=3,AB=CD=5,
所以,DE= ,
所以,菱形ABCD的面积是AB∙DE=5×4=20
故答案为20
本题考核知识点:菱形性质.解题关键点:由勾股定理求出高.
22、1
【解析】
根据轴对称图形的概念分别找出各个能成轴对称图形的小方格即可.
【详解】
解:如图所示,有1个位置使之成为轴对称图形.
故答案为:1.
本题考查利用轴对称设计图案,关键是掌握轴对称图形沿某条直线折叠,直线两旁的部分能完全重合.
23、
【解析】
根据题意可以写出相应的函数关系式,本题得以解决.
【详解】
由题意可得,
当x>3时,
y=5+(x-3)×1.2=1.2x+1.1,
故答案为:y=1.2x+1.1.
本题考查一次函数的应用,解答本题的关键是明确题意,写出相应的函数解析式.
二、解答题(本大题共3个小题,共30分)
24、非负整数解是:0,1、1.
【解析】
分别解出两不等式的解集再求其公共解.
【详解】
解:
解不等式 ①,得x>-1 .
解不等式 ②,得.
∴原不等式组的解集是.
∴原不等式组的非负整数解为0,1,1.
错因分析 较易题.失分原因:①没有掌握一元一次不等式组的解法;②取非负整数解时多取或少取导致出错.
25、(1)见解析;(2)
【解析】
(1)根据矩形的性质可得AD=BC,AB=DC,AD∥BC,∠BAD=90°,从而得出∠GDB=∠DBC,然后根据折叠的性质可得BC= BC′,∠GBD=∠DBC,从而得出AD= BC′,∠GBD=∠GDB,然后根据等角对等边可得GD=GB,即可证出结论;
(2)设GD=GB=x,利用勾股定理列出方程即可求出GD的长,然后根据三角形的面积公式求面积即可.
【详解】
(1)证明:∵四边形ABCD为矩形
∴AD=BC,AB=DC,AD∥BC,∠BAD=90°
∴∠GDB=∠DBC
由折叠的性质可得BC= BC′,∠GBD=∠DBC
∴AD= BC′,∠GBD=∠GDB
∴GD=GB
∴AD-GD= BC′-GB
∴AG=C′G;
(2)解:设GD=GB=x,则AG=AD-GD=8-x
在Rt△ABG中
即
解得:
即
∴S△BDG=
此题考查的是矩形的性质、折叠的性质、等腰三角形的判定、勾股定理和求三角形的面积,掌握矩形的性质、折叠的性质、等角对等边、利用勾股定理解直角三角形是解决此题的关键.
26、(1)p ;(1)p = 1(舍去) p = -2
【解析】
(1)根据一元二次方程ax1+bx+c=0(a≠0)的根的判别式△=b1-2ac的意义得到△≥0,即11-2×1×(p-1)≥0,解不等式即可得到p的取值范围;
(1)根据一元二次方程ax1+bx+c=0(a≠0)的解的定义得到x11-x1+p-1=0,x11-x1+p-1=0,则有x11-x1=-p+1,x11-x1=-p+1,然后把它们整体代入所给等式中得到(-p+1-1)(-p+1-1)=9,解方程求出p,然后满足(1)中的取值范围的p值即为所求.
【详解】
解:(1)∵方程x1-x+p-1=0有两个实数根x1、x1,
∴△≥0,即11-2×1×(p-1)≥0,解得p≤,
∴p的取值范围为p≤;
(1)∵方程x1-x+p-1=0有两个实数根x1、x1,
∴x11-x1+p-1=0,x11-x1+p-1=0,
∴x11-x1=-p+1,x11-x1=-p+1,
∴(-p+1-1)(-p+1-1)=9,
∴(p+1)1=9,
∴p1=1,p1= - 2,
∵p≤,
∴p= - 2.
故答案为:(1)p ;(1)p = 1(舍去) p = -2.
本题考查一元二次方程ax1+bx+c=0(a≠0)的根的判别式△=b1-2ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程ax1+bx+c=0(a≠0)的解的定义.
题号
一
二
三
四
五
总分
得分
2024年江苏省高邮市车逻镇初级中学数学九上开学教学质量检测试题【含答案】: 这是一份2024年江苏省高邮市车逻镇初级中学数学九上开学教学质量检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年江苏省高邮市车逻镇初级中学数学九上期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年江苏省高邮市车逻镇初级中学数学九上期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了下列方程中,是一元二次方程的是,方程x2=x的解是等内容,欢迎下载使用。
2023-2024学年江苏省高邮市车逻镇初级中学数学八上期末综合测试试题含答案: 这是一份2023-2024学年江苏省高邮市车逻镇初级中学数学八上期末综合测试试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,如图,在中,平分,,,则的长为,下列图形中,下列因式分解正确的是,下列变形从左到右一定正确的是等内容,欢迎下载使用。