|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024年广西昭平县九上数学开学监测模拟试题【含答案】
    立即下载
    加入资料篮
    2024年广西昭平县九上数学开学监测模拟试题【含答案】01
    2024年广西昭平县九上数学开学监测模拟试题【含答案】02
    2024年广西昭平县九上数学开学监测模拟试题【含答案】03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年广西昭平县九上数学开学监测模拟试题【含答案】

    展开
    这是一份2024年广西昭平县九上数学开学监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)已知点的坐标是,则点关于轴的对称点的坐标是( )
    A.B.C.D.
    2、(4分)在平面直角坐标系中,点B的坐标是(4,﹣1),点A与点B关于x轴对称,则点A的坐标是( )
    A.(4,1)B.(﹣1,4)C.(﹣4,﹣1)D.(﹣1,﹣4)
    3、(4分)在,,,高,则BC的长是( )
    A.14B.4C.4或14D.7或13
    4、(4分)下列调查中,不适宜用普查的是()
    A.了解全班同学每周体育锻炼的时间;B.了解全市中小学生每天的零花钱;
    C.学校招聘教师,对应聘人员面试;D.旅客上飞机前的安检.
    5、(4分)如图,的顶点坐标分别为,,,如果将先向左平移个单位,再向上平移个单位得到,那么点的对应点的坐标是( )
    A.B.C.D.
    6、(4分)如图,直线与直线交于点,则根据图象可知不等式的解集是
    A.B.C.D.
    7、(4分)下列交通标志既是中心对称图形又是轴对称图形的是( )
    A.B.C.D.
    8、(4分)某市政工程队准备修建一条长1200米的污水处理管道.在修建完400米后,为了能赶在讯期前完成,采用新技术,工作效率比原来提升了25%.结果比原计划提前4天完成任务.设原计划每天修建管道x米,依题意列方程得( )
    A.B.
    C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y米与时间x小时(0≦x≦5)的函数关系式为___
    10、(4分)如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B= ______
    11、(4分)如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G.若G是CD的中点,则BC的长是___.
    12、(4分)一次函数不经过第三象限,则k的取值范围是______
    13、(4分)已知y+1与x成正比例,则y是x的_____函数.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,已知线段a,b,∠α(如图).
    (1)以线段a,b为一组邻边作平行四边形,这样的平行四边形能作____个.
    (2)以线段a,b为一组邻边,它们的夹角为∠α,作平行四边形,这样的平行四边形能作_____个,作出满足条件的平行四边形(要求仅用直尺和圆规,保留作图痕迹,不写做法)
    15、(8分)如图,在中,点是对角线的中点,点在上,且,连接并延长交于点F.过点作的垂线,垂足为,交于点.
    (1)求证:;
    (2)若.
    ①求证:;
    ②探索与的数量关系,并说明理由.
    16、(8分)如图直线y=2x+m与y=(n≠0)交于A,B两点,且点A的坐标为(1,4).
    (1)求此直线和双曲线的表达式;
    (2)过x轴上一点M作平行于y轴的直线1,分别与直线y=2x+m和双曲线y=(n≠0)交于点P,Q,如果PQ=2QM,求点M的坐标.
    17、(10分)已知关于 x 的一元二次方程有实数根.
    (1)求 k 的取值范围;
    (2)若原方程的一个根是 2,求 k 的值和方程的另一个根.
    18、(10分)如图,直线分别与轴交于点,与轴交于点,与双曲线交于点.
    (1)求与的值;
    (2)已知是轴上的一点,当时,求点的坐标.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若平行四边形中相邻两个内角的度数比为1:3,则其中较小的内角是__________度.
    20、(4分)如图,正方形ABCD的边长为6,点E,F分别在AB,AD上,若CE=,且∠ECF=45°,则CF的长为__________.
    21、(4分)如图,在矩形ABCD中,AD=6,AB=4,点E、G、H、F分别在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,点P是直线EF、GH之间任意一点,连接PE、PF、PG、PH,则△PEF和△PGH的面积和等于________.
    22、(4分)某正比例函数图象经过点(1,2),则该函数图象的解析式为___________
    23、(4分)一组数据3,2,4,5,2的众数是______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,正方形ABCD中,O是对角线的交点,AF平分BAC,DHAF于点H,交AC于G,DH延长线交AB于点E,求证:BE=2OG.
    25、(10分)观察下列各式子,并回答下面问题.
    第一个:
    第二个:
    第三个:
    第四个:…
    (1)试写出第个式子(用含的表达式表示),这个式子一定是二次根式吗?为什么?
    (2)你估计第16个式子的值在哪两个相邻整数之间?试说明理由.
    26、(12分)因式分解
    (1)a4-16a2 (2)4x2+8x+4
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.
    【详解】
    解:∵点A的坐标为(1,2),
    ∴点A关于y轴的对称点的坐标是(-1,2),
    故选:B.
    此题主要考查了关于y轴对称点的坐标特点,关键是掌握点的坐标的变化规律.
    2、A
    【解析】
    【分析】直接利用关于x轴对称点的性质,横坐标不变纵坐标改变符号即可得出答案.
    【详解】∵点B的坐标是(4,﹣1),点A与点B关于x轴对称,
    ∴点A的坐标是:(4,1),
    故选A.
    【点睛】本题考查了关于x轴对称的点的坐标特征,正确把握横纵坐标的关系是解题关键.
    3、C
    【解析】
    分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD,CD,再由图形求出BC,在锐角三角形中,BC=BD+CD,在钝角三角形中,BC=CD−BD.
    【详解】
    解:(1)如图
    锐角△ABC中,AB=15,AC=13,BC边上高AD=12,
    在Rt△ABD中AB=15,AD=12,由勾股定理得:
    BD2=AB2−AD2=152−122=81,
    ∴BD=9,
    在Rt△ACD中AC=13,AD=12,由勾股定理得
    CD2=AC2−AD2=132−122=25,
    ∴CD=5,
    ∴BC的长为BD+DC=9+5=11;
    (2)如图
    钝角△ABC中,AB=15,AC=13,BC边上高AD=12,
    在Rt△ABD中AB=15,AD=12,由勾股定理得:
    BD2=AB2−AD2=152−122=81,
    ∴BD=9,
    在Rt△ACD中AC=13,AD=12,由勾股定理得:
    CD2=AC2−AD2=132−122=25,
    ∴CD=5,
    ∴BC的长为DC−BD=9−5=1.
    故BC长为11或1.
    故选:C.
    本题考查了勾股定理,把三角形斜边转化到直角三角形中用勾股定理解答.掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
    4、B
    【解析】
    由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
    【详解】
    A、了解全班同学每周体育锻炼的时间,数量不大,宜用全面调查,故A选项错误;
    B、了解全市中小学生每天的零花钱,数量大,不宜用全面调查,故B选项正确;
    C、学校招聘教师,对应聘人员面试,必须全面调查,故C选项错误;
    D、旅客上飞机前的安检,必用全面调查,故D选项不正确.
    故选B.
    本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
    5、C
    【解析】
    把B点的横坐标减2,纵坐标加1即为点B´的坐标.
    【详解】
    解:由题中平移规律可知:点B´的横坐标为-1−2=−3;纵坐标为1+1=2,
    ∴点B´的坐标是(−3,2).
    故选:C.
    本题考查了坐标与图形变化−平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.
    6、A
    【解析】
    根据函数图象交点右侧直线y=ax+b图象在直线:y=mx+n图象的上面,即可得出不等式ax+b>mx+n的解集.
    【详解】
    解:直线与直线交于点,
    不等式为:.
    故选:.
    此题主要考查了一次函数与不等式,利用数形结合得出不等式的解集是考试重点.
    7、C
    【解析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    A、不是轴对称图形,也不是中心对称图形,故此选项错误;
    B、不是轴对称图形,也不是中心对称图形,故此选项错误;
    C、是轴对称图形,也是中心对称图形,故此选项正确;
    D、不是轴对称图形,也不是中心对称图形,故此选项错误;
    故选C.
    此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    8、B
    【解析】
    设原计划每天修建管道x米,则原计划修建天数为天.实际前面400米,每天修建管道x米,需要天,剩下的1200-400=800米,每天修建管道x (1+25%)米,需要天. 根据实际天数比原计划提前4天完成任务即可得出数量关系.
    【详解】
    设原计划每天修建管道x米,
    根据题意的– =4,
    - - =4,
    - =4,
    选项B正确.
    本题主要考查了分式方程的应用,解题的关键是首先弄清题意,根据关键描述语,找到合适的等量关系;难点是得到实际修建的天数.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、y=6+0.3x
    【解析】
    试题分析:根据题意可得:水库的水位=初始水位高度+每小时上升的速度×时间,即y=6+0.3x.
    考点:一次函数的应用.
    10、
    【解析】
    如图,连接BB′,
    ∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,
    ∴AB=AB′,∠BAB′=60°,
    ∴△ABB′是等边三角形,
    ∴AB=BB′,
    在△ABC′和△B′BC′中,

    ∴△ABC′≌△B′BC′(SSS),
    ∴∠ABC′=∠B′BC′,
    延长BC′交AB′于D,
    则BD⊥AB′,
    ∵∠C=90∘,AC=BC=,
    ∴AB==2,
    ∴BD=2×=,
    C′D=×2=1,
    ∴BC′=BD−C′D=−1.
    故答案为:−1.
    点睛: 本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.
    11、7
    【解析】
    根据线段中点的定义可得CG=DG,然后利用“角边角”证明△DEG和△CFG全等,根据全等三角形对应边相等可得DE=CF,EG=FG,设DE=x,表示出BF,再利用勾股定理列式求EG,然后表示出EF,再根据线段垂直平分线上的点到两端点的距离相等可得BF=EF,然后列出方程求出x的值,从而求出AD,再根据矩形的对边相等可得BC=AD.
    【详解】
    ∵矩形ABCD中,G是CD的中点,AB=8,
    ∴CG=DG=×8=4,
    在△DEG和△CFG中,

    ∴△DEG≌△CFG(ASA),
    ∴DE=CF,EG=FG,
    设DE=x,
    则BF=BC+CF=AD+CF=4+x+x=4+2x,
    在Rt△DEG中,EG=,
    ∴EF=,
    ∵FH垂直平分BE,
    ∴BF=EF,
    ∴4+2x=,
    解得x=3,
    ∴AD=AE+DE=4+3=7,
    ∴BC=AD=7.
    故答案为:7.
    此题考查线段垂直平分线的性质、勾股定理、全等三角形的判定与性质,解题关键在于综合运用勾股定理、全等三角形的性质解答即可.
    12、
    【解析】
    根据图象在坐标平面内的位置关系确定k的取值范围,从而求解.
    【详解】
    解:∵一次函数y=kx+2的图象不经过第三象限,
    ∴一次函数y=kx+2的图象经过第一、二、四象限,
    ∴k<1.
    故答案为:k<1.
    本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>1时,直线必经过一、三象限;k<1时,直线必经过二、四象限.b>1时,直线与y轴正半轴相交;b=1时,直线过原点;b<1时,直线与y轴负半轴相交.
    13、一次
    【解析】
    将y+1看做一个整体,根据正比例函数的定义列出解析式解答即可.
    【详解】
    y+1与x成正比例,
    则y+1=kx,
    即y=kx-1,
    符合一次函数y=kx+b的定义条件:k、b为常数,k≠0,自变量次数为1,则y是x的一次函数.
    本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.k≠0是考查的重点.
    三、解答题(本大题共5个小题,共48分)
    14、 (1)无数;(2)图形见解析;1.
    【解析】
    (1)内角不固定,有无数个以线段a,b为一组邻边作平行四边形;
    (2)作∠MAN=a,以A为圆心,线段a和线段b为半径画弧分别交射线AN和AM于点D和B,以D为圆心,线段b为半径画弧,以B为圆心,线段a为半径画弧,交于点C;连接BC,DC.则平行四边形ABCD就是所求作的图形.
    【详解】
    解:(1)以线段a,b为一组邻边作平行四边形,这样的平行四边形能作无数个,
    故答案为:无数;
    (2)以线段a,b为一组邻边,它们的夹角为∠α,作平行四边形,这样的平行四边形能作1个,如图所示:四边形ABCD即为所求.
    故答案为:1.
    此题主要考查平行四边形的作法,熟练掌握作图方法是解题的关键.
    15、(1)见解析;(2)①见解析,②,理由见解析.
    【解析】
    (1)根据平行四边形的性质得到∠OAF=∠OCE,证明△OAF≌△OCE,根据全等三角形的对应边相等证明结论;
    (2)①过A作AM⊥BC于M,交BG于K,过G作GN⊥BC于N,根据三角形的外角性质得到∠BAG=∠BGA;
    ②证明△AME≌△BNG,根据全等三角形的性质得到ME=NG,根据等腰直角三角形的性质得到BE=GC,根据(1)中结论证明即可.
    【详解】
    (1)证明:∵四边形是平行四边形,
    ∴,,
    ∴,
    在和中,


    ∴,
    ∵,
    ∴;
    (2)①过作于,交于,过作于,
    则,
    ∵,
    ∴,
    ∵,
    ∴,,
    ∵,
    ∴,又,
    ∴,
    设,
    则,,
    ∴;
    ②,
    理由如下:∵,
    ∴,
    ∴,
    在和中,

    ∴,
    ∴,
    在等腰中,,
    ∴,
    ∴,
    ∵,
    ∴.
    本题主要考查了平行四边形的性质,全等三角形的判定与性质,等腰直角三角形的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构造全等三角形以及等腰直角三角形,利用全等三角形的对应边相等得出结论.
    16、 (1)直线的解析式为y=2x+2,反比例函数的解析式为y=;(2)M(﹣3,0)或(2,0).
    【解析】
    (1)利用待定系数法即可解决问题;
    (2)设M(a,0),表示出P(a,2a+2),Q(a,),根据PQ=2QD,列方程|2a+2-|=|2×|,解得a=2,a=-3,即可得到结果.
    【详解】
    (1)∵y=2x+m与(n≠0)交于A(1,4),
    ∴,
    ∴,
    ∴直线的解析式为y=2x+2,反比例函数的解析式为.
    (2)设M(a,0),
    ∵l∥y轴,
    ∴P(a,2a+2),Q(a,),
    ∵PQ=2QM,
    ∴|2a+2﹣|=|2×|,
    解得:a=2或a=﹣3,
    ∴M(﹣3,0)或(2,0).
    本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.
    17、(1);(2),.
    【解析】
    (1)根据根的判别式可得关于k的不等式,解不等式即可得出的取值范围;
    (2)把代入方程得出的值,再解方程即可.
    【详解】
    (1)关于的一元二次方程有实数根,



    的取值范围;
    (2)把代入,得,
    方程的两根为,,
    综上所述,.
    本题考查了根与系数的关系以及根的判别式,掌握一元二次方程的解法是解题的关键.
    18、(1)12;(2)或.
    【解析】
    (1)把点(4,m)代入直线求得m,然后代入与反比例函数,求出k;
    (2)设点P的纵坐标为y,一次函数与x轴相交于点A,与y轴相交于点C,则A(-2,0),C(0,1),然后根据S△ABP=S△APC+S△BPC列出关于y的方程,解方程求得即可.
    【详解】
    解:(1)点在一次函数上,

    又点在反比例函数上,

    (2)设点的纵坐标为,一次函数与轴相交于点,与轴相交于点,
    ,,
    又点在轴上,,
    ,即,


    或.
    本题考查的是反比例函数的图象与一次函数图象的交点问题,三角形的面积等知识,求出交点坐标,利用数形结合思想是解题的重点.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、45
    【解析】
    由平行四边形的性质得出∠B+∠C=180°,由已知条件得出∠C=3∠B,得出∠B+3∠B=180°,得出∠B=45°即可.
    【详解】
    解:如图所示:
    ∵四边形ABCD是平行四边形,
    ∴AB∥CD,
    ∴∠B+∠C=180°,
    ∵∠B:∠C=1:3,
    ∴∠C=3∠B,
    ∴∠B+4∠B=180°,
    解得:∠B=45°,
    故答案为:45°.
    本题考查了平行四边形的性质、平行线的性质;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.
    20、
    【解析】
    如图,延长FD到G,使DG=BE;
    连接CG、EF;
    ∵四边形ABCD为正方形,
    在△BCE与△DCG中,
    ,∴△BCE≌△DCG(SAS),
    ∴CG=CE,∠DCG=∠BCE,∴∠GCF=45°,
    在△GCF与△ECF中,
    ,∴△GCF≌△ECF(SAS),∴GF=EF,
    ∵CE=3,CB=6,∴BE=,∴AE=3,
    设AF=x,则DF=6−x,GF=3+(6−x)=9−x,
    ∴EF= ,∴(9−x)²=9+x²,∴x=4,即AF=4,
    ∴GF=5,∴DF=2,
    ∴CF= = ,
    故答案为:.
    点睛:本题考查了全等三角形的判定与性质,勾股定理的知识点,构建三角形,利用方程思想是解答本题的关键.
    21、1
    【解析】
    连接EG,FH,根据题目数据可以证明△AEF与△CGH全等,根据全等三角形对应边相等可得EF=GH,同理可得EG=FH,然后根据两组对边相等的四边形是平行四边形可得四边形EGHF是平行四边形,所以△PEF和△PGH的面积和等于平行四边形EGHF的面积的一半,再利用平行四边形EGHF的面积等于矩形ABCD的面积减去四周四个小直角三角形的面积即可求解.
    【详解】
    解:∵在矩形ABCD中,AD=6,AB=4,AF=CG=2,BE=DH=1,
    ∴AE=AB-BE=4-1=3,
    CH=CD-DH=4-1=3,
    ∴AE=CH,
    在△AEF与△CGH中,,
    ∴△AEF≌△CGH(SAS),
    ∴EF=GH,
    同理可得,△BGE≌△DFH,
    ∴EG=FH,
    ∴四边形EGHF是平行四边形,
    ∵△PEF和△PGH的高的和等于点H到直线EF的距离,
    ∴△PEF和△PGH的面积和=×平行四边形EGHF的面积,
    平行四边形EGHF的面积
    =4×6-×2×3-×1×(6-2)-×2×3-×1×(6-2),
    =24-3-2-3-2,
    =14,
    ∴△PEF和△PGH的面积和=×14=1.
    故答案为1.
    考点:矩形的性质;平行四边形的判定与性质.
    22、
    【解析】
    设正比例函数的解析式为y=kx,然后把点(1,2)代入y=kx中求出k的值即可.
    【详解】
    解:设正比例函数的解析式为y=kx,
    把点(1,2)代入得,
    2=k×1,
    解得k=2,
    ∴该函数图象的解析式为:;
    故答案为:.
    本题主要考查了待定系数法求正比例函数解析式,掌握待定系数法求正比例函数解析式是解题的关键.
    23、1
    【解析】
    从一组数据中找出出现次数最多的数就是众数,发现1出现次数最多,因此1是众数.
    【详解】
    解:出现次数最多的是1,因此众数是1,
    故答案为:1.
    本题考查了众数的意义,从一组数据中找到出现次数最多的数就是众数.
    二、解答题(本大题共3个小题,共30分)
    24、证明见解析.
    【解析】
    分析:作OM∥AB交DE于M.首先证明OM是△DEB的中位线,再根据等角对等边证明OG=OM即可解决问题.
    详解:作OM∥AB交DE于M.
    ∵四边形ABCD是正方形,
    ∴OB=OD,
    ∵OM∥BE,
    ∴EM=DM,
    ∴BE=2OM,
    ∵∠OAD=∠ADO=∠BAC=45°,
    ∵AF平分∠BAC,
    ∴∠EAH=22.5°,
    ∵AF⊥DE,
    ∴∠AHE=∠AHD=90°,
    ∴∠AEH=67.5°,
    ∵∠ADE+∠AED=90°,
    ∴∠ADE=22.5°,
    ∴∠OGD=∠GAD+∠ADE=67.5°,
    ∵∠AEH=∠OME=67.5°,
    ∴∠OGM=∠OMG,
    ∴OG=OM,
    ∴BE=2OG.
    点睛:本题考查了正方形的性质,平行线的性质,等腰三角形的判定,三角形的中位线等知识点,正确作出辅助线,证明OG=OM是解答本题的关键.
    25、(1),该式子一定是二次根式,理由见解析;(2)在15和16之间.理由见解析.
    【解析】
    (1)依据规律可写出第n个式子,然后判断被开方数的正负情况,从而可做出判断;
    (2)将代入,得出第16个式子为,再判断即可.
    【详解】
    解:(1),
    该式子一定是二次根式,
    因为为正整数,,所以该式子一定是二次根式
    (2)
    ∵,,
    ∴.
    ∴在15和16之间.
    本题考查的知识点是二次根式的定义以及估计无理数的大小,掌握用“逼近法”估算无理数的大小的方法是解此题的关键.
    26、 (1) a2(a+4)(a-4);(2) 4(x+1)2
    【解析】
    (1)先提取公因式a2,再对余下的多项式利用平方差公式继续分解;
    (2)先提取公因式4,再对余下的多项式利用完全平方公式继续分解.
    【详解】
    (1)a4-16a2,
    =a2(a2-16),
    =a2(a+4)(a-4);
    (2)4x2+8x+4
    =4(x2+2x+1)
    =4(x+1)2.
    考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
    题号





    总分
    得分
    相关试卷

    2024年广西昭平县数学九上开学检测模拟试题【含答案】: 这是一份2024年广西昭平县数学九上开学检测模拟试题【含答案】,共23页。试卷主要包含了选择题,三象限D.第二,解答题等内容,欢迎下载使用。

    2024年广西省玉林市数学九上开学学业质量监测模拟试题【含答案】: 这是一份2024年广西省玉林市数学九上开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年广西南宁八中学数学九上开学监测模拟试题【含答案】: 这是一份2024年广西南宁八中学数学九上开学监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map