2025届河南省濮阳市第六中学九上数学开学达标检测模拟试题【含答案】
展开这是一份2025届河南省濮阳市第六中学九上数学开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若,则的值为( )
A.1B.-1C.-7D.7
2、(4分)某校八年级(1)班全体学生进行了第一次体育中考模拟测试,成绩统计如下表:
根据上表中的信息判断,下列结论中错误的是( )
A.该班一共有42名同学
B.该班学生这次考试成绩的众数是8
C.该班学生这次考试成绩的平均数是27
D.该班学生这次考试成绩的中位数是27分
3、(4分)下列各组线段a、b、c中不能组成直角三角形的是( )
A.a=8,b=15,c=17B.a=7,b=24,c=25
C.a=40,b=50,c=60D.a=,b=4,c=5
4、(4分)下列图形都是由同样大小的▲按一定规律组成的,其中第1个图形中一共有6个▲:第2个图形中一共有9个▲;第3个图形中一共有12个▲;…授此规律排列,则第2019个图形中▲的个数为( )
A.2022B.4040C.6058D.6060
5、(4分)下列命题中是真命题的有( )个.
①当x=2时,分式的值为零②每一个命题都有逆命题③如果a>b,那么ac>bc④顺次连接任意四边形各边中点得到的四边形是平行四边形⑤一组对边平行,另一组对边相等的四边形是平行四边形.
A.0B.1C.2D.3
6、(4分)直线y=2x向下平移2个单位长度得到的直线是( )
A.y=2(x+2) B.y=2(x﹣2) C.y=2x﹣2 D.y=2x+2
7、(4分)已知( ).
A.3B.-3C.5D.-5
8、(4分)将方程化成一元二次方程的一般形式,正确的是( ).
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在函数y=中,自变量x的取值范围是_____.
10、(4分)已知,则______
11、(4分)一组数据3,4,6,8,x的中位数是x,且x是满足不等式组的整数,则这组数据的平均数是 .
12、(4分)某一次函数的图象经过点(3,),且函数y随x的增大而增大,请你写出一个符合条件的函数解析式______________________
13、(4分)使二次根式有意义的x的取值范围是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=1.
(1)求证:方程有两个不相等的实数根;
(2)若方程有一个根是5,求k的值.
15、(8分)如图,在四边形中,平分,,是的中点,,过作于,并延长至点,使.
(1)求证:;
(2)若,求证:四边形是菱形.
16、(8分)若a=,b=,请计算a2+b2+2ab的值.
17、(10分)解方程组:.
18、(10分)如图,将边长为 4 的正方形 ABCD 沿其对角线 AC 剪开,再把△ABC沿着 AD 方向平移,得到 △ABC .
(1)当两个三角形重叠部分的面积为 3 时,求移动的距离 AA ;
(2)当移动的距离 AA 是何值时,重叠部分是菱形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为1,则第n个矩形的面积为_____.
20、(4分)直线y=kx+b与直线y=-3x+4平行,且经过点(1,2),则k=______,b=______.
21、(4分)如图,在四边形中,点是对角线的中点,点、分别是、的中点,,且,则______.
22、(4分)如图,△ACE是以ABCD的对角线AC为边的等边三角形,点C与点E关于x轴对称.若E点的坐标是(7,),则D点的坐标是_____.
23、(4分)若一个正多边形的每一个外角都是30°,则这个正多边形的内角和等于__________度.
二、解答题(本大题共3个小题,共30分)
24、(8分) “大美武汉,畅游江城”.某校数学兴趣小组就“最想去的武汉市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:
请根据图中提供的信息,解答下列问题:
(1)求被调查的学生总人数;
(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;
(3)若该校共有1200名学生,请估计“最想去景点B“的学生人数.
25、(10分)如图所示,已知平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.
(1)求证:平行四边形ABCD是矩形;
(2)请添加一个条件使矩形ABCD为正方形.
26、(12分)如图,在△ABC中,∠ACB=90°,AC=8,BC=1.CD⊥AB于点D.点P从点A出发,以每秒1个单位长度的速度沿线段AB向终点B运动.在运动过程中,以点P为顶点作长为2,宽为1的矩形PQMN,其中PQ=2,PN=1,点Q在点P的左侧,MN在PQ的下分,且PQ总保持与AC垂直.设P的运动时间为t(秒)(t>0),矩形PQMN与△ACD的重叠部分图形面积为S(平方单位).
(1)求线段CD的长;
(2)当矩形PQMN与线段CD有公共点时,求t的取值范围;
(3)当点P在线段AD上运动时,求S与t的函数关系式.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
首先根据非负数的性质,可列方程组求出x、y的值,进而可求出x-y的值.
【详解】
由题意,得:,
解得;
所以x-y=4-(-3)=7;
故选:D.
此题主要考查非负数的性质:非负数的和为1,则每个非负数必为1.
2、B
【解析】
根据众数,中位数,平均数的定义解答.
【详解】
解:该班共有6+5+5+8+7+7+4=42(人),
成绩27分的有8人,人数最多,众数为27;
该班学生这次考试成绩的平均数是=(24×6+25×5+26×5+27×8+28×7+29×7+30×4)=27,
该班学生这次考试成绩的中位数是第21名和第22名成绩的平均数为27分,错误的为B,
故选:B.
本题考查的是众数,中位数,平均数,熟练掌握众数,中位数,平均数的定义是解题的关键.
3、C
【解析】
这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.
【详解】
解:、因为,所以能组成直角三角形;
、因为,所以能组成直角三角形;
、因为,所以不能组成直角三角形;
、因为,所以能组成直角三角形.
故选:C.
本题考查勾股定理的逆定理的应用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
4、D
【解析】
仔细观察图形,找到图形中圆形个数的通项公式,然后代入n=100求解即可.
【详解】
解:观察图形得:
第1个图形有3+3×1=6个三角形,
第2个图形有3+3×2=9个三角形,
第3个图形有3+3×3=12个三角形,
…
第n个图形有3+3n=3(n+1)个三角形,
当n=2019时,3×(2019+1)=6060,
故选D.
本题考查了图形的变化类问题,解题的关键是仔细的读题并找到图形变化的规律,难度不大.
5、C
【解析】
根据分式为0的条件、命题的概念、不等式的性质、平行四边形的判定定理进行判断即可.
【详解】
①当x=2时,分式无意义,①是假命题;
②每一个命题都有逆命题,②是真命题;
③如果a>b,c>0,那么ac>bc,③是假命题;
④顺次连接任意四边形各边中点得到的四边形是平行四边形,④是真命题;
⑤一组对边平行,另一组对边相等的四边形不一定是平行四边形,⑤是假命题,
故选C.
6、C
【解析】
据一次函数图象与几何变换得到直线y=1x向下平移1个单位得到的函数解析式为y=1x﹣1.
【详解】
直线y=1x向下平移1个单位得到的函数解析式为y=1x﹣1.
故选:C.
本题考查了一次函数图象与几何变换:一次函数y=kx(k≠0)的图象为直线,当直线平移时k不变,当向上平移m个单位,则平移后直线的解析式为y=kx+m.
7、A
【解析】
观察已知m2-m-1=0可转化为m2-m=1,再对m4-m3-m+2提取公因式因式分解的过程中将m2-m作为一个整体代入,逐次降低m的次数,使问题得以解决.
【详解】
∵m2-m-1=0,
∴m2-m=1,
∴m4-m3-m+2=m2 (m2-m)-m+2=m2-m+2=1+2=3,
故选A.
本题考查了因式分解的应用,解决本题的关键是将m2-m作为一个整体出现,逐次降低m的次数.
8、B
【解析】
通过移项把方程4x2+5x=81化成一元二次方程的一般形式.
【详解】
方程4x2+5x=81化成一元二次方程的一般形式是4x2+5x-81=1.
故选B.
此题主要考查了一元二次方程的一般形式,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=1(a≠1).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x≥﹣2且x≠1.
【解析】
根据二次根式的非负性及分式有意义的条件来求解不等式即可.
【详解】
解:根据题意,得:x+2≥1且x≠1,
解得:x≥﹣2且x≠1,
故答案为x≥﹣2且x≠1.
二次根式及分式有意义的条件是本题的考点,正确求解不等式是解题的关键.
10、34
【解析】
∵,∴=,
故答案为34.
11、1.
【解析】
解不等式组得,3≤x<1,
∵x是整数,∴x=3或2.
当x=3时,3,2,6,8,x的中位数是2(不合题意舍去);
当x=2时,3,2,6,8,x的中位数是2,符合题意.
∴这组数据的平均数可能是(3+2+6+8+2)÷1=1.
12、y=x-4
【解析】
首先设一次函数解析式为y=kx+b,根据y随x的增大而增大可选取k=1(k取任意一个正数即可),再把点(3,﹣1)代入可得﹣1=3+b,计算出b的值,进而可得解析式.
【详解】
∵函数的值随自变量的增大而增大,
∴该一次函数的解析式为y=kx+b(k>0),
∴可选取k=1,
再把点(3,﹣1)代入:﹣1=3+b,
解得:b=-4,
∴一次函数解析式为y=x-4,
故答案为:y=x-4(答案不唯一).
本题考查一次函数的性质,掌握一次函数图象与系数的关系是解题的关键.
13、
【解析】
试题分析:根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.
考点:二次根式有意义的条件.
三、解答题(本大题共5个小题,共48分)
14、(1)证明见解析;(2)k=4或k=2.
【解析】
(1)根据根的判别式为1,得出方程有两个不相等的实数根;(2)将x=2代入方程得出关于k的一元二次方程,从而得出k的值.
【详解】
(1)∵△=
=
=,
∴方程有两个不相等的实数根;
(2)∵方程有一个根为2,
∴,
,
∴,.
本题考查了一元二次方程根的判别式,因式分解法解一元二次方程,熟练掌握相关知识是解题的关键.
15、(1)见详解;(2)见详解
【解析】
(1)欲证明AC2=CD•BC,只需推知△ACD∽△BCA即可;
(2)利用“在直角三角形中,30度角所对的直角边等于斜边的一半”、“直角三角形斜边上的中线等于斜边的一半”推知四边形AKEC的四条边都相等,则四边形AKEC是菱形.
【详解】
证明:(1)∵AC平分∠BCD,
∴∠DCA=∠ACB.
又∵AC⊥AB,AD⊥AE,
∴∠DAC+∠CAE=90°,∠CAE+∠EAB=90°,
∴∠DAC=∠EAB.
又∵E是BC的中点,
∴AE=BE,
∴∠EAB=∠ABC,
∴∠DAC=∠ABC,
∴△ACD∽△BCA,
∴,
∴AC2=CD•BC;
(2)证明:∵EF⊥AB,AC⊥AB,
∴EF∥AC,
又∵∠B=30°,
∴AC=BC=EB=EC.
又EF=EB,
∴EF=AC,
即AF=FE=EC=CA,
∴四边形AFEC是菱形.
本题考查了四边形综合题,需要熟练掌握相似三角形的判定与性质,“直角三角形斜边上的中线等于斜边的一半”、“在直角三角形中,30°角所对的直角边等于斜边的一半”以及菱形的判定才能解答该题.
16、1.
【解析】
将a、b的值代入原式=(a+b)2计算可得.
【详解】
当a=,b=时,
原式=(a+b)2
=1.
本题主要考查考查二次根式的运算,解题的关键是掌握完全平方公式和二次根式的混合运算顺序和法则.
17、,,,.
【解析】
由①得(x﹣y)(x﹣2y)=0,即x﹣y=0,x﹣2y=0,然后将原方程组化为或求解即可.
【详解】
,
由①,得(x﹣y)(x﹣2y)=0,
∴x﹣y=0,x﹣2y=0,
所以原方程组可以变形为或,
解方程组,得,;
解方程组,得,,
所以原方程组的解为: ,,,.
本题考查了二元二次方程组的解法,解题思路类似与二元一次方程组,通过代入消元法转化为一元二次方程求解即可.
18、(1)AA =1或3;(2)AA =时,重叠部分是菱形.
【解析】
(1)根据平移的性质,结合阴影部分是平行四边形,设AA′=x,AC与A′B′相交于点E,则A′D=4-x,△AA′E是等腰直角三角形,根据平行四边形的面积公式即可列出方程求解;
(2)设AC与CD交于点F,当四边形A′ECF是菱形时,有A′E=A′F,设AA′=x,则A′E=x,A′D=4-x,再由A′F=A′D,可得方程,解之即得结果.
【详解】
(1)设AA′=x,AC与A′B′相交于点E,如图,
∵△ACD是正方形ABCD剪开得到的,
∴△ACD是等腰直角三角形,
∴∠A=45°,
∴△AA′E是等腰直角三角形,
∴A′E=AA′=x,A′D=AD-AA′=4-x,
∵阴影部分面积为3,
∴x(4-x)=3,
整理得,x2-4x+3=0,
解得x1=1,x2=3,
即移动的距离AA′=1或3.
(2)设AC与CD交于点F,当四边形A′ECF是菱形时,A′E=A′F,
设AA′=x,则A′E=CF=x,A′D=DF=4-x,
∵△A′DF是等腰直角三角形,
∴A′F=A′D,
即,
解得,
即当移动的距离为时,重叠部分是菱形.
本题考查了平移的性质、等腰直角三角形的性质和判定、正方形和菱形的性质及一元二次方程的解法等知识,解决本题的关键是抓住平移后图形的特点,利用方程思想解题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、()n-1
【解析】
试题分析:已知第一个矩形的面积为1;
第二个矩形的面积为原来的()2-1=;
第三个矩形的面积是()3-1=;
…
故第n个矩形的面积为:.
考点:1.矩形的性质;2.菱形的性质.
20、-3, 1
【解析】
根据两直线平行,得到k=-3,然后把(1,2)代入y=-3x+b中,可计算出b的值.
【详解】
∵直线y=kx+b与直线y=-3x+4平行,
∴k=-3,
∵直线y=-3x+b过点(1,2),
∴1×(-3)+b=2,
∴b=1.
故答案为:-3;1.
本题主要考查两平行直线的函数解析式的比例系数关系,掌握若两条直线是平行的关系,那么它们的函数解析式的自变量系数相同,是解题的关键.
21、45
【解析】
根据三角形中位线定理易证△FPE是等腰三角形,然后根据平行线的性质和三角形外角的性质求出∠FPE =90°即可.
【详解】
解:∵是的中点,、分别是、的中点,
∴EP∥AD,EP=AD,FP∥BC,FP=BC,
∵AD=BC,
∴EP=FP,
∴△FPE是等腰三角形,
∵,
∴∠PEB+∠ABD+∠DBC=90°,
∴∠FPE=∠DPE+∠DPF=∠PEB+∠ABD+∠DBC=90°,
∴,
故答案为:45.
本题考查了三角形中位线定理,等腰三角形的判定和性质,平行线的性质以及三角形外角的性质,根据三角形中位线定理证得△FPE是等腰三角形是解题关键.
22、(3,0)
【解析】
∵点C与点E关于x轴对称,E点的坐标是(7,),
∴C的坐标为(7,).
∴CH=,CE=,
∵△ACE是以ABCD的对角线AC为边的等边三角形,
∴AC=.
∴AH=1.
∵OH=7,
∴AO=DH=2.
∴OD=3.
∴D点的坐标是(3,0).
23、1800
【解析】
多边形的外角和等于360°,则正多边形的边数是360°÷30°=12,所以正多边形的内角和为.
二、解答题(本大题共3个小题,共30分)
24、(1)40;(2)详见解析,72°;(3)420人.
【解析】
(1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;
(2)先计算出最想去D景点的人数,再补全条形统计图,然后用360°乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“最想去景点D”的扇形圆心角的度数;
(3)用1200乘以样本中最想去B景点的人数所占的百分比即可.
【详解】
解:(1)被调查的学生总人数为8÷20%=40(人);
(2)最想去D景点的人数为40-8-14-4-6=8(人),
补全条形统计图为:
扇形统计图中表示“最想去景点D”的扇形圆心角的度数为×360°=72°;
(3)1200×=420,
所以估计“最想去景点B“的学生人数为420人.
故答案为(1)40;(2)图形见解析,72°;(3)420人.
本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图和利用样本估计总体.
25、(1)证明见解析;(2)AB=AD(或AC⊥BD答案不唯一).
【解析】
试题分析:(1)根据平行四边形对角线互相平分可得OA=OC,OB=OD,根据等角对等边可得OB=OC,然后求出AC=BD,再根据对角线相等的平行四边形是矩形证明;
(2)根据正方形的判定方法添加即可.
试题解析:解:(1)∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵∠OBC=∠OCB,∴OB=OC,∴AC=BD,∴平行四边形ABCD是矩形;
(2)AB=AD(或AC⊥BD答案不唯一).
理由:∵四边形ABCD是矩形,又∵AB=AD,∴四边形ABCD是正方形.
或:∵四边形ABCD是矩形,又∵AC⊥BD,∴四边形ABCD是正方形.
26、(1)CD=;(2)≤t≤;(3)当0<t<时,S=;当≤t≤时, S=2;当<t≤时,S=.
【解析】
(1)由勾股定理得出AB=10,由△ABC的面积得出AC•BC=AB•CD,即可得出CD的长;
(2)分两种情形:①当点N在线段CD上时,如图1所示,利用相似三角形的性质求解即可.②当点Q在线段CD上时,如图2所示,利用相似三角形的性质求解即可;
(3)首先求出点Q落在AC上的运动时间t,再分三种情形:①当0<t<时,重叠部分是矩形PNYH,如图4所示,②当≤t≤时,重合部分是矩形PNMQ,S=PQ•PN=2,③当<t≤时,如图5中重叠部分是五边形PQMJI,分别求解即可.
【详解】
解:(1)∵∠ACB=90°,AC=8,BC=1,
∴AB==10,
∵S△ABC=AC•BC=AB•CD,
∴AC•BC=AB•CD,即:8×1=10×CD,
∴CD=;
(2)在Rt△ADC中,AD=,BD=AB−AD=,
当点N在线段CD上时,如图1所示:
∵矩形PQMN,PQ总保持与AC垂直,
∴PN∥AC,
∴∠NPD=∠CAD,
∵∠PDN=∠ADC,
∴△PDN∽△ADC,
∴,即:,
解得:PD=,
∴t=AD−PD=;
当点Q在线段CD上时,如图2所示:
∵PQ总保持与AC垂直,
∴PQ∥BC,△DPQ∽△DBC,
∴,即:,
解得:DP=,
∴t=AD+DP=,
∴当矩形PQMN与线段CD有公共点时,t的取值范围为:≤t≤;
(3)当Q在AC上时,如图3所示:
∵PQ总保持与AC垂直,
∴PQ∥BC,△APQ∽△ABC,
∴,即:,
解得:AP=,
当0<t<时,重叠部分是矩形PNYH,如图4所示:
∵PQ∥BC,
∴△APH∽△ABC,
∴,即:,
∴PH=,
∴S=PH•PN=;
当≤t≤时,重合部分是矩形PNMQ,S=PQ•PN=2;
当<t≤时,如图5中重叠部分是五边形PQMJI,
易得△PDI∽△ACB∽△JNI,
∴,即:,
∴PI=(−t)•,
∴,即:,
∴JN=,
S=S矩形PNMQ−S△JIN=2−·()·[1−(−t)•]=.
本题属于四边形综合题,考查了勾股定理解直角三角形,矩形的性质,相似三角形的判定和性质,多边形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.
题号
一
二
三
四
五
总分
得分
批阅人
成绩(分)
24
25
26
27
28
29
30
人数(人)
6
5
5
8
7
7
4
相关试卷
这是一份2024年枣庄市重点中学九上数学开学达标检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年西安市东仪中学数学九上开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年山东省日照于里中学九上数学开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。