2025届河北省廊坊市霸州市南孟镇中学数学九上开学统考试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)不等式组有( )个整数解.
A.2B.3C.4D.5
2、(4分)如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则等于( )
A.B.C.D.
3、(4分)方程x(x﹣1)=0的根是( )
A.x=0B.x=1C.x1=0,x2=1D.x1=0,x2=﹣1
4、(4分)两组数据:98,99,99,100和98.5,99,99,99.5,则关于以下统计量说法不正确的是( )
A.平均数相等
B.中位数相等
C.众数相等
D.方差相等
5、(4分)如图,正方形ABCD与正方形EBHG的边长均为,正方形EBHG的顶点E恰好落在正方形ABCD的对角线BD上,边EG与CD相交于点O,则OD的长为
A.
B.
C.
D.
6、(4分)下面四个多项式中,能进行因式分解的是( )
A.x2+y2B.x2﹣yC.x2﹣1D.x2+x+1
7、(4分)某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为( )
A.2%B.4.4%C.20%D.44%
8、(4分)如图所示,正比例函数和一次函数交于,则不等式的解集为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知a+b=5,ab=-6,则代数式ab2+a2b的值是______.
10、(4分)中华文化源远流长,如图是中国古代文化符号的太极图,圆中的黑色部分和白色部分关于圆心中心对称.在圆内随机取一点,则此点取黑色部分的概率是__.
11、(4分)某学生会倡导的“爱心捐款”活动结束后,学生会干部对捐款情况作了抽样调查,并绘制了统计图,图中从左到右各长方形高度之比为,又知此次调查中捐15元和20元的人数共26人.
(1)他们一共抽查了______人;
(2)抽查的这些学生,总共捐款______元.
12、(4分)点A(a,﹣5)和(3,b)关于x轴对称,则ab=_____.
13、(4分)在四边形中,给出下列条件:① ② ③ ④
其中能判定四边形是平行四边形的组合是________或 ________或_________或_________.
三、解答题(本大题共5个小题,共48分)
14、(12分)2008年6月1日起,我国实施“限塑令”,开始有偿使用环保购物袋.为了满足市场需求,某厂家生产两种款式的布质环保购物袋,每天共生产4500个,两种购物袋的成本和售价如下表,设每天生产种购物袋个,每天共获利元.
(1)求出关于的函数解析式;
(2)如果该厂每天最多投入成本10000元,那么每天最多获利多少元?
15、(8分)若x=3+2,y=3-2,求的值.
16、(8分)某校学生会调查了八年级部分学生对“垃圾分类”的了解程度(1)在确定调查方式时,学生会设计了以下三种方案,其中最具有代表性
的方案是________;
方案一:调查八年级部分男生;
方案二:调查八年级部分女生;
方案三:到八年级每个班去随机调查一定数量的学生.
(2)学生会采用最具有代表性的方案进行调查后,将收集到的数据绘制成如下两幅不完整的统计图,如图①、图②.请你根据图中信息,回答下列问题:
①本次调查学生人数共有_______名;
②补全图①中的条形统计图,图②中了解一点的圆心角度数为_______;
③根据本次调查,估计该校八年级500名学生中,比较了解“垃圾分类”的学生大约有_______名.
17、(10分)(1)(发现)如图1,在中,分别交于,交于.已知,,,求的值.
思考发现,过点作,交延长线于点,构造,经过推理和计算能够使问题得到解决(如图2).
请回答:的值为______.
(2)(应用)如图3,在四边形中,,与不平行且,对角线,垂足为.若,,,求的长.
(3)(拓展)如图4,已知平行四边形和矩形,与交于点,,且,,判断与的数量关系并证明.
18、(10分)如图,已知反比例函数 y=的图像经过点A(-1,a),过点A作AB⊥x轴,垂足为点B,△AOB的面积为.
(1)求a、k的值;
(2)若一次函数y=mx+n图像经过点A和反比例函数图像上另一点,且与x轴交于M点,求AM的值:
(3)在(2)的条件下,如果以线段AM为一边作等边△AMN,顶点N在一次数函数y=bx上,则b= ______.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若二次根式有意义,则x的取值范围是_____.
20、(4分)函数的图像与如图所示,则k=__________.
21、(4分)课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米,围成苗圃园的面积为72平方米,设这个苗圃园垂直于墙的一边长为x米.可列方程为_____.
22、(4分)计算的结果是_____.
23、(4分)数据2,0,1,9的平均数是__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)在期末考试来临之际,同学们都进入紧张的复习阶段,为了了解同学们晚上的睡眠情况,现对年级部分同学进行了调查统计,并制成如下两幅不完整的统计图:(其中A代表睡眠时间8小时左右,B代表睡眠时间6小时左右,C代表睡眠时间4小时左右,D代表睡眠时间5小时左右,E代表睡眠时间7小时左右),其中扇形统计图中“E”的圆心角为90°,请你结合统计图所给信息解答下列问题:
(1)共抽取了 名同学进行调查,同学们的睡眠时间的中位数是 小时左右,并将条形统计图补充完整;
(2)请你估计年级每个学生的平均睡眠时间约多少小时?
25、(10分)先化简,再求值: 其中a=
26、(12分)某校九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛,各参赛选手的成绩如下:
九(1)班:88,91,92,93,93,93,94,98,98,100;
九(2)班:89,93,93,93,95,96,96,98,98,1.
通过整理,得到数据分析表如下:
(1)直接写出表中m、n、p的值为:m=______,n=______,p=______;
(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好.”但也有人说(2)班的成绩要好.请给出两条支持九(2)班成绩更好的理由;
(3)学校确定了一个标准成绩,等于或大于这个成绩的学生被评定为“优秀”等级,如果九(2)班有一半的学生能够达到“优秀”等级,你认为标准成绩应定为______分,请简要说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
求出不等式组的解集,即可确定出整数解.
【详解】
,
由①得:x>﹣,
由②得:x≤3,
∴不等式组的解集为﹣<x≤3,
则整数解为0,1,2,3,共4个,
故选C.
本题考查了一元一次不等式组的整数解,熟练掌握解一元一次不等式组的方法以及解集的确定方法是解题的关键.
2、A
【解析】
试题分析:设AB=a,根据题意知AD=2a,由四边形BMDN是菱形知BM=MD,设AM=b,则BM=MD=2a-b.在Rt△ABM中,由勾股定理即可求值.
试题解析:∵四边形MBND是菱形,
∴MD=MB.
∵四边形ABCD是矩形,
∴∠A=90°.
设AB=a,AM=b,则MB=2a-b,(a、b均为正数).
在Rt△ABM中,AB2+AM2=BM2,即a2+b2=(2a-b)2,
解得a=,
∴MD=MB=2a-b=,
∴.
故选A.
考点:1.矩形的性质;2.勾股定理;3.菱形的性质.
3、C
【解析】
由题意推出x=0,或(x﹣1)=0,解方程即可求出x的值.
【详解】
解:∵x(x﹣1)=0,
∴x1=0,x2=1,
故选:C.
此题考查的是一元二次方程的解法,掌握用因式分解法解一元二次方程是解决此题的关键.
4、D
【解析】
根据平均数的计算公式、众数和中位数的概念以及方差的计算公式计算,判断即可.
【详解】
(98+99+99+100)=99,(98.5+99+99+99.5)=99,平均数相等,A不合题意;
两组数据:98,99,99,100和98.5,99,99,99.5的中位数都是99,众数是99,则中位数相等,众数相等,B、C不合题意;
[(98﹣99)2+(99﹣99)2+(99﹣99)2+[100﹣99)2][(98.5﹣99)2+(99﹣99)2+(99﹣99)2+[99.5﹣99)2],方差不相等,D符合题意.
故选D.
本题考查了平均数、众数、中位数和方差,掌握它们的概念以及计算公式是解题的关键.
5、B
【解析】
由正方形性质可得AB=AD=CD=BE=,∠A=∠C=∠DEO=90〬,∠EDO=45〬,由勾股定理得BD=,求出DE,再根据勾股定理求OD.
【详解】
解:因为,正方形ABCD与正方形EBHG的边长均为,
所以,AB=AD=CD=BE=,∠A=∠C=∠DEO=90〬,∠EDO=45〬,
所以,BD=,
所以,DE=BD-BE=2- ,
所以,OD=
故选B.
本题考核知识点:正方形,勾股定理.解题关键点:运用勾股定理求出线段长度.
6、C
【解析】
根据因式分解的定义对各选项分析后利用排除法求解.
【详解】
A、x2+y2不能进行因式分解,故本选项错误;
B、x2-y不能进行因式分解,故本选项错误;
C、x2-1能利用平方差公式进行因式分解,故本选项正确;
D、x2+x+1不能进行因式分解,故本选项错误.
故选C.
本题主要考查了因式分解定义,因式分解就是把一个多项式写成几个整式积的形式,是基础题,比较简单.
7、C
【解析】
分析:设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,根据2017年及2019年“竹文化”旅游收入总额,即可得出关于x的一元二次方程,解之取其正值即可得出结论.
详解:设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,
根据题意得:2(1+x)2=2.88,
解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).
答:该市2018年、2019年“竹文化”旅游收入的年平均增长率约为20%.
故选C.
点睛:本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
8、B
【解析】
利用函数的图象,写出在直线上方所对应的自变量的范围即可.
【详解】
当时,,
所以不等式的解集为
故选B.
本题考查了一次函数与一元一次不等式,从函数图象的角度看,就是确定直线在x轴上(或下)方部分所有的点的横坐标.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、-1.
【解析】
先利用提公因式法因式分解,然后利用整体代入法求值即可.
【详解】
解:∵ab2+a2b=ab(a+b),
而a+b=5,ab=-6,
∴ab2+a2b=-6×5=-1.
故答案为:-1.
此题考查的是因式分解,掌握利用提公因式法因式分解是解决此题的关键.
10、
【解析】
根据中心对称图形的性质得到圆中的黑色部分和白色部分面积相等, 根据概率公式计算即可 .
【详解】
∵圆中的黑色部分和白色部分关于圆心中心对称,
∴圆中的黑色部分和白色部分面积相等,
∴在圆内随机取一点, 则此点取黑色部分的概率是,
故答案为.
考查的是概率公式、 中心对称图形, 掌握概率公式是解题的关键 .
11、1, 2.
【解析】
(1)设捐款5元,10元,15元,20元,30元的人数分别为3x人,4x人,5x人,8x人,2x人.构建方程即可解决问题.
(2)根据捐款人数以及捐款金额,求出总金额即可.
【详解】
解:(1)设捐款5元,10元,15元,20元,30元的人数分别为3x人,4x人,5x人,8x人,2x人.
由题意:5x+8x=26,
解得x=2,
∴一共有:6+8+10+16+4=1人,
故答案为1.
(2)总共捐款额=6×5+8×10+10×15+16×20+4×30=2(元).
故答案为:2.
本题考查频数分布直方图,抽样调查等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
12、1.
【解析】
根据关于x轴对称的点的横坐标相同,纵坐标互为相反数可得a、b的值,继而可求得答案.
【详解】
∵点A(a,-5)和点B(3,b)关于x轴对称,
∴a=3,b=5,
∴ab=1,
故答案为:1.
本题考查了关于x轴对称的点的坐标特征,熟练掌握是解题的关键.
13、①③ ①④ ②④ ③④
【解析】
根据平行四边形的判定定理确定即可.
【详解】
解:如图,
①③:,, 四边形是平行四边形(两组对边分别平行的四边形是平行四边形);
①④:,, 四边形是平行四边形(两组对边分别平行的四边形是平行四边形);
②④:,, 四边形是平行四边形(一组对边平行且相等的四边形是平行四边形);
③④:, 四边形是平行四边形(两组对边分别平行的四边形是平行四边形);
所以能判定四边形是平行四边形的组合是①③或①④或②④或③④.
故答案为:①③或①④或②④或③④.
本题考查了平行四边形的判定定理,一组对边平行且相等的四边形是平行四边形;两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形,灵活选用条件及合适的判定定理是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)1.
【解析】
解:(1)y=0.3x+0.5(4500-x)=-0.2x+2250
(2)2x+3(4500-x)≤10000
X≥3500
因为y是x的一次函数,k=-0.2<0,y随x的增大而减小,当x=3500时y的值最小为1元。
根据题意,利用(总获利=A个数×A单位获利+B个数×B单位获利),得到函数解析式,再根据(2)的题意可得到一个不等式,解不等式求出x的范围,再结合(1)中的函数式可得出x的具体数值.
15、1
【解析】
先运用平方差及完全平方公式进行因式分解,再约分,将分式化到最简即可.
【详解】
=
=
=
=1.
故当x=3+2,y=3−2时,原式=1.
本题考查了二次根式的化简求值.运用公式将分子因式分解可使运算简便.由于所求代数式化简之后是一个常数1,与字母取值无关.因而无论x、y取何值,原式都等于1.
16、(1)方案三;(2)①120;②216;③150.
【解析】
(1)由于学生总数比较多,采用抽样调查方式,方案一、方案二只涉及到男生和女生一个方面,过于片面,所以应选方案三;
(2)①由不了解的人数和所占的比例可得出调查总人数;
②先求出了解一点的人数和所占比例,再用360°乘以这个比例可得圆心角度数;
③用八年级学生人数乘以比较了解“垃圾分类”的学生比例可得答案。
【详解】
解:(1)方案一、方案二只涉及到男生和女生一个方面,过于片面,所以应选方案三;
(2)①不了解的有12人,占10%,所以本次调查学生人数共有12÷10%=120名;
②了解一点的人数是120-12-36=72人,所占比例为,所以了解一点的圆心角度数为360°×60%=216°,补全的图形如下图
故答案为:216;
③500×=150名
故答案为:150
本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.
17、(1) ;(2);(3).
【解析】
(1)由DE//BC,EF//DC,可证得四边形DCFE是平行四边形,求出DE=CF,DC=EF,由DC⊥BE,可得△BEF是直角三角形,利用勾股定理,求出BF的长即为BC+DE的值;
(2)同(1)做CE//DB,交AB延长线于点E,易证四边形DBEC是平行四边形,根据已知可证△DAB△CBA(SAS),得AC=DB,等量代换,可得AC=CE,故△ACE是等腰直角三角形,AE=8,利用勾股定理,即可求得AC;
(3)连接AE、CE,由四边形ABCD是平行四边形,四边形ABEF是矩形,易证得四边形DCEF是平行四边形,继而证得△ACE是等腰直角三角形,求出AC=CE,而DF=CE,即可得出答案.
【详解】
解:(1)∵DE//BC,EF//DC,
∴四边形DCFE是平行四边形,
∴DE=CF,DC=EF,
∴BC+ED=BC+CF=BF,
∵DC⊥BE,DC//EF,
∴∠BEF=90°,在Rt△BEF中,
∵BE=5,EF=DC=3,
∴BF==.
故BC+DE=.
(2)做CE//DB,交AB延长线于点E,
由(1)同理,可证得四边形DBEC是平行四边形,BE=DC=3,
在△DAB和△CBA中 ,
∴△DAB△CBA(SAS),
∴DB=AC,
∵四边形DBEC是平行四边形,DB=CE,
∴AC=CE,
∵AC⊥DB,
∴AC⊥CE,
∴△ACE是等腰直角三角形,
∵AE=AB+BE=AB+DC=5+3=8,
∴AC=,求得AC=.
故AC的长为.
(3)AC=DF;
证明:连接AE、CE,如图,
∵四边形ABCD是平行四边形,
∴AB//DC,
∵四边形ABEF是矩形,
∴AB//FE,BF=AE,
∴DC//FE,
∴四边形DCEF为平行四边形,
∴CE=DF,
∵四边形ABEF是矩形,
∴BF=AE,
∵BF=DF,
∴DF=CE,
∴AF=BE,
∵四边形ABCD是平行四边形,
∴AD=BC,
在△FAD和△EBC中 ,
∴△FAD△EBC(SSS),
∴∠AFD=∠BEC,
∴∠FEB=∠EFA=90°,
∵∠EBF=60°,∠BFD=30°,
∴∠DFA=90°-30°-(90°-60°)=30°,
∴∠CEB=30°,
∴OE=OB,
∵∠EBF=60°,
∴∠BEA=∠EBF=60°,
∴∠AEC=60°+30°=90°,
即△AEC是等腰直角三角形,
∴AC=CE,
∵DF=CE,
∴AC=DF.
故AC与DF之间的数量关系是AC=DF.
本题考查几何的综合,难度偏高,涉及的知识点有三角形、四边形、平行线等,熟练掌握以上知识点的综合运用是顺利解题的关键.
18、(1),;(2);(3).
【解析】
(1)根据点A的坐标以及三角形的面积公式即可求出a值,再根据反比例函数图象上点的坐标特征即可求出k的值;
(2)根据反比例函数解析式可求出点C的坐标,由点A、C的坐标利用待定系数法即可求出直线AM的解析式,令线AM的解析式中y=0求出x值,即可得出点M的坐标,再利用勾股定理即可求出线段AM的长度;
(3)设点N的坐标为(m,n),由等边三角形的性质结合两点间的距离公式即可得出关于m、n的二元二次方程组,解方程组即可得出n与m之间的关系,由此即可得出b值.
【详解】
解:(1)∵,
∴,
∴,
∴把A点的坐标为,
代入得;
(2)∵在反比例函数的图象上,
∴,
∴,
∴,
将,代入y=mx+n中,
得 ,解得: ,
∴直线AM解析式为:,
当时,,
∴,
在中,,,
∴;
(3)设点N的坐标为(m,n),
∵△AMN为等边三角形,且AM=,A(-1,),M(2,0),
∴,
解得:,
∵顶点N(m,n)在一次函数y=bx上,
∴b=.
本题考查了三角形的面积公式、反比例函数图象上点的坐标特征、勾股定理以及解二元二次方程组,解题的关键是:(1)求出点A的坐标;(2)求出点M的坐标;(3)根据等边三角形的性质找出关于m、n的二元二次方程组.本题属于中档题,难度不大,解决该题型题目时,根据等边三角形的性质利用两点间的距离公式找出点的横纵坐标之间的关系是关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x≥
【解析】
根据二次根式中的被开方数是非负数,可得出x的取值范围.
【详解】
∵二次根式有意义,∴2x﹣1≥0,解得:x≥.
故答案为x≥.
本题考查了二次根式有意义的条件,解答本题的关键是掌握:二次根式有意义,被开方数为非负数.
20、
【解析】
首先根据一次函数y=2x与y=6-kx图象的交点纵坐标为4,代入一次函数y=2x求得交点坐标为(2,4),然后代入y=6-kx求得k值即可.
【详解】
∵一次函数y=2x与y=6-kx图象的交点纵坐标为2,
∴4=2x,
解得:x=2,
∴交点坐标为(2,4),
代入y=6-kx,6-2k=4,解得k=1.
故答案为:1.
本题考查了两条直线平行或相交问题,解题的关键是交点坐标适合y=2x与y=6-kx两个解析式.
21、x(31-2x)=72 或x2-15x+36=1
【解析】
设这个苗圃园垂直于墙的一边长为x米,则苗圃园与墙平行的一边长为(31-2x)米,依题意可列方程 x(31-2x)=72,即x2-15x+36=1.
点睛:本题考查了长方形的周长公式的运用,长方形的面积公式的运用,一元二次方程的解法的运用,解答时根据长方形的面积公式建立方程是关键.
22、
【解析】
【分析】根据分式的加减法法则进行计算即可得答案.
【详解】原式=
=
=,
故答案为.
【点睛】本题考查分式的加减运算,熟练掌握分式加减的运算法则是解题的关键,本题属于基础题.
23、1
【解析】
根据算术平均数的定义计算可得.
【详解】
数据2,0,1,9的平均数是=1,
故答案是:1.
考查算术平均数,解题的关键是掌握算术平均数的定义.
二、解答题(本大题共3个小题,共30分)
24、(1)20,6;(2)估计年级每个学生的平均睡眠时间约6.3小时
【解析】
分析:(1)由B的人数和所占百分数求出共抽取的人数;再求出E和A的人数,由中位数的定义求出中位数,再将条形统计图补充完整即可;
(2)求出所抽取的20名同学的平均睡眠时间,即可得出结果.
详解:(1)共抽取的同学人数=6÷30%=20(人),
睡眠时间7小时左右的人数=20×=5(人),睡眠时间8小时左右的人数=20﹣6﹣2﹣3﹣5=4(人),
按照睡眠时间从小到大排列,各组人数分别为2,3,6,5,4,睡眠时间分别为4,5,6,7,8,共有20个数据,
第10个和第11个数据都是6小时,它们的平均数也是6小时,
∴同学们的睡眠时间的中位数是6小时左右;
故答案为20,6;
将条形统计图补充完整如图所示:
(2)∵平均数为(4×8+6×6+2×4+3×5+5×7)=6.3(小时),
∴估计年级每个学生的平均睡眠时间约6.3小时.
点睛:本题考查了条形统计呼和扇形统计图以及中位数和平均数的知识,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.
25、-2.
【解析】
先根据分式的运算法则进行计算化简,再把a=代入化简后的式中求值即可。
【详解】
解:原式
当a=时, = = -2
本题主要考查了分式的化简求值,解题的关键是正确的化简.
26、 (1) 94,92.2,93;(2)见解析;(3)92.2.
【解析】
(1)求出九(1)班的平均分确定出m的值,求出九(2)班的中位数确定出n的值,求出九(2)班的众数确定出p的值即可;
(2)分别从平均分,方差,以及中位数方面考虑,写出支持九(2)班成绩好的原因;
(3)用中位数作为一个标准即可衡量是否有一半学生达到优秀等级.
【详解】
解:(1)九(1)班的平均分=
=94,
九(2)班的中位数为(96+92)÷2=92.2,
九(2)班的众数为93,
故答案为:94,92.2,93;
(2)①九(2)班平均分高于九(1)班;②九(2)班的成绩集中在中上游;③九(2)班的成绩比九(1)班稳定;故支持B班成绩好;
(3)如果九(2)班有一半的学生评定为“优秀”等级,标准成绩应定为92.2(中位数).因为从样本情况看,成绩在92.2以上的在九(2)班有一半的学生.可以估计,如果标准成绩定为92.2,九(2)班有一半的学生能够评定为“优秀”等级,
故答案为92.2.
本题考查了平均数、中位数、众数以及方差的定义,属于统计中的基本题型,需重点掌握.
题号
一
二
三
四
五
总分
得分
成本(元/个)
售价(元/个)
2
2.3
3
3.5
班级
最高分
平均分
中位数
众数
方差
九(1)班
100
m
93
93
12
九(2)班
1
95
n
p
8.4
2024年河北省廊坊市霸州市南孟镇中学数学九上开学调研模拟试题【含答案】: 这是一份2024年河北省廊坊市霸州市南孟镇中学数学九上开学调研模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河北省廊坊市霸州市南孟镇中学2023-2024学年数学九上期末监测试题含答案: 这是一份河北省廊坊市霸州市南孟镇中学2023-2024学年数学九上期末监测试题含答案,共9页。试卷主要包含了考生要认真填写考场号和座位序号,下列说法正确的是,已知函数y=ax2+bx+c等内容,欢迎下载使用。
河北省廊坊市霸州市南孟镇中学2023-2024学年数学九年级第一学期期末综合测试模拟试题含答案: 这是一份河北省廊坊市霸州市南孟镇中学2023-2024学年数学九年级第一学期期末综合测试模拟试题含答案,共8页。