2024-2025学年河北省廊坊市安次区数学九上开学经典试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若关x的分式方程有增根,则m的值为( )
A.3B.4C.5D.6
2、(4分)要使二次根式有意义,则x的取值范围是( )
A.x≥1B.x≤1C.x>1D.x<1
3、(4分)使函数y=有意义的自变量x的取值范围是( )
A.x≥6B.x≥0C.x≤6D.x≤0
4、(4分)一个多边形的每个内角都等于135°,则这个多边形的边数为( )
A.5B.6C.7D.8
5、(4分)下列平面图形中,既是轴对称图形又是中心对称图形的是( )
A.B.C.D.
6、(4分)如图,在平行四边形ABCD中,AE平分∠BAD,交BC于点E且AB=AE,延长AB与DE的延长线相交于点F,连接AC、CF.下列结论:①△ABC≌△EAD;②△ABE是等边三角形;③BF=AD;④S△BEF=S△ABC;⑤S△CEF=S△ABE;其中正确的有( )
A.2个B.3个C.4个D.5个
7、(4分)下列表格是二次函数的自变量x与函数值y的对应值,判断方程(为常数)的一个解x的范围是
A.B.
C.D.
8、(4分)下列x的值中,能使不等式成立的是( )
A.B.2C.3D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知一组数据 a,b,c,d的方差是4,那么数据,,, 的方差是________.
10、(4分)若反比例函数y=的图象在二、四象限,则常数a的值可以是_____.(写出一个即可)
11、(4分)如图,在四边形ABCD中,AB=BC=2,CD=1,AD=3,若∠B=90°,则∠BCD的度数为____________________.
12、(4分)一次函数y= -2x+4的图象与坐标轴所围成的三角形面积是 _____.
13、(4分)已知直线y=x﹣3与y=2x+2的交点为(﹣5,﹣8),则方程组的解是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)计算题:
(1);
(2)已知,,求代数式的值.
15、(8分)如图,四边形ABCD中,AC,BD相交于点O,O是AC的中点,AD∥BC.
(1)求证:四边形ABCD是平行四边形
(2)若AC⊥BD,且AB=4,则四边形ABCD的周长为________.
16、(8分)如图,在平面直角坐标系中,菱形的顶点在反比例函数图象上,直线交于点,交正半轴于点,且
求的长:
若,求的值.
17、(10分)百货商店销售某种冰箱,每台进价2500元.市场调研表明:当销售价为2900元时,平均每天能售出8台;每台售价每降低10元时,平均每天能多售出1台.(销售利润=销售价-进价)
(1)如果设每台冰箱降价x元,那么每台冰箱的销售利润为______元,平均每天可销售冰箱______台;(用含x的代数式表示)
(2)商店想要使这种冰箱的销售利润平均每天达到5600元,且尽可能地清空冰箱库存,每台冰箱的定价应为多少元?
18、(10分)如图,从电线杆离地面12m处向地面拉一条长为13m的钢缆,则地面钢缆固定点A到电线杆底部B的距离为_____.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)直角三角形中,两条直角边长分别为12和5,则斜边上的中线长是________.
20、(4分)实数a、b在数轴上的位置如图所示,化简=_____.
21、(4分)请你写出一个一次函数,使它经过二、三、四象限_____.
22、(4分)如图,的对角线,交于点,点是的中点,若,则的长是______.
23、(4分)如图,菱形ABCD的边长为8cm,∠B=45°,AE⊥BC于点E,则菱形ABCD的面积为_____cm2。
二、解答题(本大题共3个小题,共30分)
24、(8分)某校八年级共有四个班,人数分别为:人,有一次数学测试,每个班同学的平均成绩分别为:分、分、分、分。
(1)求这次数学测试的全年级平均成绩;
(2)若所有学生的原测试成绩的方差为。后来发现有一道分题,所有同学都不得分,是题错了,老师只好在每位同学的原成绩上加上分,那么现在全年级的平均成绩和这些成绩数据的方差各是多少?
(3)其中八(1)班人的平均分66分,测试成绩的中位数也恰好,且成绩是分的只有一人,每个同学的测试成绩都是整数,那么八(1)班所有同学的测试成绩的方差不会小于哪个数?
25、(10分)如图,在平面直角坐标系中,菱形的顶点与原点重合,点在轴的正半轴上,点在函数的图象上,点的坐标为.
(1)求的值.
(2)将点沿轴正方向平移得到点,当点在函数的图象上时,求的长.
26、(12分)本题有许多画法,你不妨试一试:如图所示的是8的正方形网格,A、B两点均在格点上,现请你在下图中分别画出一个以A、B、C、D为顶点的菱形(可包含正方形),要求:(1)C、D也在格点上;(2)只能使用无刻度的直尺;(3)所画的三个菱形互不全等。
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出m的值.
【详解】
去分母得:2x-x+3=m,
由分式方程有增根,得到x-3=0,即x=3,
把x=3代入整式方程得:m=6,
故选D.
此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.
2、A
【解析】
根据二次根式有意义的条件:被开方数为非负数,解答即可.
【详解】
∵有意义,
∴x-1≥0,
解得x≥1,
故选A.
本题考查二次根式有意义的条件,使用二次根式有意义,被开方数大于等于0;熟练掌握二次根式的被开方数的非负数性质是解题关键.
3、C
【解析】
根据被开方式是非负数列式求解即可.
【详解】
解:由题意,得
6﹣x≥0,
解得x≤6,
故选:C.
本题考查了函数自变量的取值范围,函数有意义时字母的取值范围一般从几个方面考虑:①当函数解析式是整式时,字母可取全体实数;②当函数解析式是分式时,考虑分式的分母不能为0;③当函数解析式是二次根式时,被开方数为非负数.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.
4、D
【解析】
先求出多边形的每一个外角的度数,继而根据多边形的外角和为360度进行求解即可.
【详解】
∵一个多边形的每个内角都等于135°,
∴这个多边形的每个外角都等于180°-135°=45°,
∵多边形的外角和为360度,
∴这个多边形的边数为:360÷45=8,
故选D.
本题考查了多边形的外角和内角,熟练掌握多边形的外角和为360度是解本题的关键.
5、B
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A不是轴对称图形,是中心对称图形;
B是轴对称图形,也是中心对称图形;
C和D是轴对称图形,不是中心对称图形.
故选B.
掌握中心对称图形与轴对称图形的概念:
轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;
中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.
6、B
【解析】
根据平行四边形的性质可得AD//BC,AD=BC,根据平行线的性质可得∠BEA=∠EAD,根据等腰三角形的性质可得∠ABE=∠BEA,即可证明∠EAD=∠ABE,利用SAS可证明△ABC≌△EAD;可得①正确;由角平分线的定义可得∠BAE=∠EAD,即可证明∠ABE=∠BEA=∠BAE,可得AB=BE=AE,得出②正确;由S△AEC=S△DEC,S△ABE=S△CEF得出⑤正确;题中③和④不正确.综上即可得答案.
【详解】
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴∠BEA=∠EAD,
∵AB=AE,
∴∠ABE=∠BEA,
∴∠EAD=∠ABE,
在△ABC和△EAD中,,
∴△ABC≌△EAD(SAS);故①正确;
∵AE平分∠BAD,
∴∠BAE=∠DAE,
∴∠ABE=∠BEA=∠BAE,
∴∠BAE=∠BEA,
∴AB=BE=AE,
∴△ABE是等边三角形;②正确;
∴∠ABE=∠EAD=60°,
∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),
∴S△FCD=S△ABC,
∵△AEC与△DEC同底等高,
∴S△AEC=S△DEC,
∴S△ABE=S△CEF;⑤正确.
若AD=BF,则BF=BC,题中未限定这一条件,
∴③不一定正确;
如图,过点E作EH⊥AB于H,过点A作AG⊥BC于G,
∵△ABE是等边三角形,
∴AG=EH,
若S△BEF=S△ABC,则BF=BC,题中未限定这一条件,
∴④不一定正确;
综上所述:正确的有①②⑤.
故选:B.
本题考查平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质,熟练掌握等底、等高的三角形面积相等的性质是解题关键.
7、C
【解析】
利用二次函数和一元二次方程的性质.
由表格中的数据看出-0.01和0.02更接近于0,故x应取对应的范围.
故选C.
8、A
【解析】
根据不等式的解集的概念即可求出答案.
【详解】
解:不等式x-1<1的解集为:x<1.
所以能使不等式x-1<1成立的是-2.
故选:A.
本题考查不等式的解集,解题的关键是正确理解不等式的解的概念,本题属于基础题型.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
方差是用来衡量一组数据波动大小的量,每个数都加了2,所以波动不会变,方差不变.从而可得答案.
【详解】
解:设数据a、b、c、d的平均数为,
数据都加上了2,则平均数为,
∵
故答案为1.
本题考查了方差,说明了当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变.掌握以上知识是解题的关键.
10、2(答案不唯一).
【解析】
由反比例函数y=的图象在二、四象限,可知a-3<0,据此可求出a的取值范围.
【详解】
∵反比例函数y=的图象在二、四象限,
∴a-3<0,
∴a<3,
∴a可以取2.
故答案为2.
本题考查了反比例函数的图像与性质,对于反比例函数(k是常数,k≠0),当k>0,反比例函数图象的两个分支在第一、三象限,在每一象限内,y随x的增大而减小;当 k<0,反比例函数图象的两个分支在第二、四象限,在每一象限内,y随x的增大而增大.
11、135°
【解析】
根据勾股定理求出AC,根据勾股定理的逆定理求出∠ACD=90°,进而得出答案.
【详解】
连接AC,
在Rt△ABC中,由勾股定理得:,
∵AB=BC,
∴∠BAC=∠ACB=45°,
∵CD=1,AD=3,AC=2,
∴AC2+CD2=AD2,
∴∠ACD=90°,
∴∠DCB=90°+45°=135°,
故答案为:135°.
本题考查了勾股定理,勾股定理的逆定理的应用,能求出△ACD是直角三角形是解此题的关键.
12、4
【解析】
【分析】结合一次函数y=-2x+4的图象可以求出图象与x轴的交点为(2,0),以及与y轴的交点为(0,4),可求得图象与坐标轴所围成的三角形的面积.
【详解】令y=0,则x=2;令x=0,则y=4,
∴一次函数y=-2x+4的图象与x轴的交点为(2,0),与y轴的交点为(0,4).
∴S=.
故正确答案为4.
【点睛】本题考查了一次函数图象与坐标轴的交点坐标.关键令y=0,可求直线与x轴的交点坐标;令x=0,可求直线与y轴的交点坐标.
13、
【解析】
由一次函数的交点与二元一次方程组解的关系可知方程组的解是.
故答案为
三、解答题(本大题共5个小题,共48分)
14、(1);(2)12.
【解析】
(1)利用以及二次根式运算法则计算即可;
(2)根据=计算即可.
【详解】
(1)=()=;
(2)∵,,
∴==.
本题主要考查了二次根式的化简计算,熟练掌握相关公式是解题关键.
15、(1)证明见解析;(2)16.
【解析】
(1)已知O是AC的中点,可得AO=CO.又因AD∥BC,根据平行线的性质可得,再由,利用ASA即可判定,由全等三角形的性质可得AD=BC,再由一组对边平行且相等的四边形为平行四边形即可判定四边形ABCD是平行四边形;(2)根据对角线互相垂直的平行四边形为菱形判定四边形ABCD为菱形,由此即可求得四边形ABCD的周长.
【详解】
(1)证明:∵O是AC的中点,
∴AO=CO.
∵AD∥BC ,
∴ ,
又∵ ,
∴ ,
∴AD=BC,
又∵AD∥BC,
∴四边形ABCD是平行四边形.
(2)∵四边形ABCD是平行四边形,AC⊥BD,
∴四边形ABCD是菱形,
∵AB=4,
∴菱形ABCD的周长为16.
本题考查了平行四边形的判定及菱形的判定与性质,证明是解决问题的关键.
16、(1)6;(2)4
【解析】
(1)首先利用勾股定理求出EF的长,然后结合题意利用菱形的性质证明出△DOE为等腰三角形,由此求出DO,最后进一步求解即可;
(2)过点A作AN⊥OE,垂足为E,在Rt△AON中,利用勾股定理求出AN的长,然后进一步根据反比例函数的性质求出值即可.
【详解】
(1)∵,
∴EF=,∠OEF=∠OFE=45°,
∵四边形OABC为菱形,
∴OA=AB=BC=OC,OB⊥AC,DO=DB,
∴△DOE为等腰三角形,
∴DO=DE=EF=3,
∴OB=2DO=6;
(2)
如图,过点A作AN⊥OE,垂足为E,则△ANE为等腰直角三角形,
∴AN=NE,
设AN=,则NE=,ON=,
在Rt△AON中,由勾股定理可得:,
解得:,,
当时,A点坐标为:(,),C点坐标为:(,);
当时,C点坐标为:(,),A点坐标为:(,);
∴.
本题主要考查了菱形的性质和等腰三角形性质与判定及勾股定理和反比例函数性质的综合运用,熟练掌握相关概念是解题关键.
17、(1),;(2) 应定价2700元.
【解析】
(1)销售利润=一台冰箱的利润×销售冰箱数量,一台冰箱的利润=售价-进价,降低售价的同时,销售量就会提高,“一减一加”;
(2)根据每台的盈利×销售的件数=5600元,即可列方程求解.
【详解】
解:(1)每台冰箱的销售利润为元,平均每天可销售冰箱台;
(2) 依题意,可列方程:
解方程,得x1 =120 ,x2 =200
因为要尽可能地清空冰箱库存,所以x=120舍去
2900-200=2700元
答:应定价2700元.
点睛:本题考查了一元二次方程的应用,关键是会表示一台冰箱的利润,销售量增加的部分.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.
18、5m.
【解析】
根据勾股定理即可得到结果.
【详解】
解:在Rt△ABC中BC=12,AC=13,AB2+BC2=AC2
∴AB2=AC2-BC2=132-122=25
∴AB=5
答:地面钢缆固定点A到电线杆底部B的距离为5米.
考点:本题考查勾股定理的应用
点评:解答本题的关键是熟练掌握勾股定理:直角三角形的两直角边的平方和等于斜边的平方.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、6.5
【解析】
利用勾股定理求得直角三角形的斜边,然后利用直角三角形斜边上的中线等于斜边的一半解题.
【详解】
解:如图,在△ABC中,∠C=90°,AC=11,BC=5,
根据勾股定理知,
∵CD为斜边AB上的中线,
故答案为:6.5
本题考查了勾股定理、直角三角形斜边上的中线.勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a1+b1=c1.即直角三角形,两直角边的平方和等于斜边的平方.直角三角形的性质:在直角三角形中斜边上的中线等于斜边的一半.
20、-b
【解析】
根据数轴判断出、的正负情况,然后根据绝对值的性质以及二次根式的性质解答即可.
【详解】
由图可知,,,
所以,,
.
故答案为-b
本题考查了实数与数轴,绝对值的性质以及二次根式的性质,根据数轴判断出、的正负情况是解题的关键.
21、答案不唯一:如y=﹣x﹣1.
【解析】
根据已知可画出此函数的简图,再设此一次函数的解析式为:y=kx+b,然后可知:k<0,b<0,即可求得答案.
【详解】
∵图象经过第二、三、四象限,∴如图所示.
设此一次函数的解析式为:y=kx+b,∴k<0,b<0,∴此题答案不唯一:如y=﹣x﹣1.
故答案为:答案不唯一:如y=﹣x﹣1.
本题考查了一次函数的性质.题目难度不大,注意数形结合思想的应用.
22、3
【解析】
先说明OE是△BCD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解.
【详解】
∵▱ABCD的对角线AC、BD相交于点O,
∴OB=OD,AD=BC=6
∵点E是CD的中点,
∴CE=DE,
∴OE是△BCD的中位线,
∵AD=6,
∴OE=AD=3.
故答案为:3
此题考查平行四边形的性质,解题关键在于利用OE是△BCD的中位线
23、32
【解析】
根据AE⊥BC,∠B=45°知△AEB为等腰直角三角形.在Rt△AEB中,根据勾股定理即可得出AE的长度,根据面积公式即可得出菱形ABCD的面积.
【详解】
四边形ABCD为菱形,则AB=BC=CD=DA=8cm,
∵AE⊥BC且∠B=45°,
∴△AEB为等腰直角三角形,
∴AE=BE,
在△AEB中,根据勾股定理可以得出+=,
∴2=,
∴AE====4,
∴菱形ABCD的面积即为BC×AE=8×4=32.
本题目主要考查菱形的性质及面积公式,本题的解题关键在于通过勾股定理得出菱形的高AE的长度.
二、解答题(本大题共3个小题,共30分)
24、(1)65.99分;(2)全年级的平均成绩为68.99分,这些成绩数据的方差为25;(3)方差不会小于.
【解析】
(1)利用平均数的计算公式计算;
(2)根据平均数的性质、方差的性质解答;
(3)根据方差的性质得到符合条件的与平均数最接近的一组数据是20个65、1个66,20个67,根据方差的计算公式计算即可.
【详解】
(1)全年级平均成绩=≈65.99(分);
(2)每位同学的原成绩上加上3分,
全年级的平均成绩为65.99+3=68.99(分),
这些成绩数据的方差为25;
(3)∵所有数据越接近平均数,方差越小,且平均数只有一个,
∴符合条件的与平均数最接近的一组数据是20个65、1个66,20个67,
S2=×[20×(-1)2+0+20×12]=,
则八(1)班所有同学的测试成绩的方差不会小于.
本题考查的是方差、平均数、中位数的概念和计算,掌握平均数的计算公式、方差的计算公式、中位数的概念和性质是解题的关键.
25、 (1)k=12;(2)DD′=.
【解析】
(1)首先延长AD交x轴于点F,由点D坐标可得出OD的长,由菱形的性质,即可得出点A坐标,进而得出k;
(2)由(1)可得知反比例函数解析式,由点D的坐标可知点D′的纵坐标,代入函数解析式即可得出点D′的横坐标,即可得解.
【详解】
(1) 延长AD交x轴于点F,如图所示,
∵点D的坐标为(4,1),
∴OF=4,DF=1.
∴OD=2.
∴AD=2.
∴点A坐标为(4,8).
∴k=xy=4×8=12.
∴k=12.
(2) 由平移得点D′的纵坐标为1.
由(1)可知函数解析式为,
∵点D′在的图象上,
∴1=.
解得:x=.
∴DD′=﹣4=.
此题主要考查菱形的性质和反比例函数的性质,熟练运用,即可解题.
26、见解析
【解析】
直接利用菱形的定义得出符合题意的图形即可.
【详解】
解:由题知,再根据四边相等的四边形为菱形,作出其他边即可,如下图所示:
此题主要考查了应用设计与作图以及菱形的性质,正确掌握菱形的性质是解题关键.
题号
一
二
三
四
五
总分
得分
批阅人
x
…
6.17
6.18
6.19
6.20
…
…
-0.03
-0.01
0.02
0.04
…
2024-2025学年贵州省贵阳市数学九上开学经典模拟试题【含答案】: 这是一份2024-2025学年贵州省贵阳市数学九上开学经典模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年广西柳州市数学九上开学经典模拟试题【含答案】: 这是一份2024-2025学年广西柳州市数学九上开学经典模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年河北省廊坊市广阳区育人学校九年级(上)开学数学试卷(含答案): 这是一份2024-2025学年河北省廊坊市广阳区育人学校九年级(上)开学数学试卷(含答案),共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。